Aplicação de polímeros biorreabsorvíveis em medicina cardiovascular

Main Article Content

Carlos Eduardo Brantis de Carvalho
http://orcid.org/0000-0003-4127-2929
Lucas Tiezi Oliveira
Ricardo Cadam Luz
Eduardo José Caetano Vanoni
Milena Gonçalves Guerreiro
Lucas Francisco Clemente Camara
Wiltron Rogerio Lustri
http://orcid.org/0000-0001-6627-4758

Resumo

Biopolímeros são polímeros produzidos por várias espécies de organismos vivos incluindo microrganismos ou, até́ mesmo, obtidos sinteticamente. Os biopolímeros, quando comparados aos polímeros sintéticos, apresentam algumas vantagens, como estruturas bem definidas e de maior complexidade, degradabilidade e reciclabilidade, que determinam vantagens em seu uso. Seu emprego industrial é amplo e compreende materiais médicos, embalagens, cosméticos, aditivos para alimentos, tecidos, produtos para tratamento de água, plásticos de emprego industrial, absorventes, biossensores e dispositivos de armazenamento de dados. Neste cenário, diversos biopolímeros vêm sendo aplicados na medicina no preparo de implantes para reparo e substituição de ossos, olhos, orelhas, articulações de joelhos e quadril e, com destaque, para a confecção de implantes cardiovasculares como stents e valvas cardíacas. Dentre os diversos biopolímeros existentes, os polímeros biodegradáveis de poliésteres estão entre os mais utilizados na confecção de aparatos médicos, dentre os quais, destacam-se os derivados de Ácido poliláctico (PLA), Ácido Poliláctico-co-glicólico Poli-4-hidroxibutirato (P4HB), os quais, devidas as suas características de mecânicas e de biocompatibilidade e permitem um alto grau de modificações e seletividade para a produção de artigos médicos. Ainda, com os avanços científicos das últimas décadas, blendas diversas e modificações em sua estrutura/composição contornaram seus principais atributos adversos como a hidrofobicidade e a baixa adesão celular. Assim sendo, um volume substancial de pesquisas científicas vem sendo realizado para conferir aos poliésteres características específicas e distintas daquelas já comercialmente disponíveis. Esta revisão objetivou a produção, biocompatibilidade e na utilização de polímeros biodegradáveis preparados a partir de Ácido Polilático (PLA) e Poli-4-hidroxibutirato (P4HB), assim como em suas blendas com outros polímeros, na manufatura de stents e de substitutos para valvas cardíacas. 

Downloads

Não há dados estatísticos.

Article Details

Como Citar
Brantis de Carvalho, C. E., Oliveira, L. T., Luz, R. C., Vanoni, E. J. C., Guerreiro, M. G., Camara, L. F. C., & Lustri, W. R. (2022). Aplicação de polímeros biorreabsorvíveis em medicina cardiovascular . Revista Brasileira Multidisciplinar, 25(1), 166-181. https://doi.org/10.25061/2527-2675/ReBraM/2022.v25i1.1053
Seção
Artigo de Divulgação

Referências

ALI, Iftikhar; JAMIL, Nazia. Polyhydroxyalkanoates: Current applications in the medical field. Frontiers in Biology, vol. 11, no. 1, p. 19–27, 2016. https://doi.org/10.1007/s11515-016-1389-z.

ALVES, Ana Rita Carvalho. Engenharia de tecidos: válvulas cardíacas. 2013. 2013.

ANDERSON, Lisa A; ISLAM, M Ahsanul; PRATHER, Kristala L J. Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. Journal of Biological Chemistry, vol. 293, no. 14, p. 5053–5061, 2018. https://doi.org/10.1074/jbc.tm117.000368.

ARAÚJO, Rubens Capistrano de. Competitividade de diferentes atmosferas de plasma sobre as propriedades hidrofílicas em tecidos de polilático. 2013. 2013.

BASSAS-GALIÀ, Mònica; GONZALEZ, Adolfo; MICAUX, Fabrice; GAILLARD, Vanessa; PIANTINI, Umberto; SCHINTKE, Silvia; ZINN, Manfred; MATHIEU, Marc. Chemical Modification of Polyhydroxyalkanoates (PHAs) for the Preparation of Hybrid Biomaterials. Chimia, vol. 69, no. 10, p. 627–30, 2015. https://doi.org/10.2533/chimia.2015.627.

BHUPENDRA, Davé Vipul; GEORGE, Landau; PREMAL, Patel. Biodegradable vascular device with buffering agent. [S. l.: s. n.], 2010.

CHASSENIEUX, Christophe; DURAND, Dominique; JYOTISHKUMAR, Parameswaranpillai; THOMAS, Sabu. Handbook of Biopolymer-Based Materials. , p. 1–6, 2013. https://doi.org/10.1002/9783527652457.ch1.

COMMANDEUR, SUZAN; BEUSEKOM, HELEEN M M VAN; GIESSEN, WIM J VAN DER. Polymers, Drug Release, and Drug-Eluting Stents. Journal of Interventional Cardiology, vol. 19, no. 6, p. 500–506, 2006. https://doi.org/10.1111/j.1540-8183.2006.00198.x.

DIE, Erfindernennung liegt noch nicht vor. Tubular support implant with heart valve in particular for aorta valve replacement. [S. l.: s. n.], 2007.

DOHMEN, Pascal M; KONERTZ, Wolfgang. Tissue-engineered heart valve scaffolds. Annals of thoracic and cardiovascular surgery : official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia, vol. 15, no. 6, p. 362–7, 2009. .

GASSER, E; BALLMANN, P; DRÖGE, S; BOHN, J; KÖNIG, H. Microbial production of biopolymers from the renewable resource wheat straw. Journal of Applied Microbiology, vol. 117, no. 4, p. 1035–1044, 2014. https://doi.org/10.1111/jam.12581.

GRABOW, Niels; BÜNGER, Carsten M; SCHULTZE, Christine; SCHMOHL, Kathleen; MARTIN, David P; WILLIAMS, Simon F; STERNBERG, Katrin; SCHMITZ, Klaus-Peter. A Biodegradable Slotted Tube Stent Based on Poly(l-lactide) and Poly(4-hydroxybutyrate) for Rapid Balloon-Expansion. Annals of Biomedical Engineering, vol. 35, no. 12, p. 2031–2038, 2007. https://doi.org/10.1007/s10439-007-9376-9.

HAZER, Baki; STEINBÜCHEL, Alexander. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Applied Microbiology and Biotechnology, vol. 74, no. 1, p. 1–12, 2007. https://doi.org/10.1007/s00253-006-0732-8.

HELMUS, Michael N; GIBBONS, Donald F; CEBON, David. Biocompatibility: Meeting a Key Functional Requirement of Next-Generation Medical Devices. Toxicologic Pathology, vol. 36, no. 1, p. 70–80, 2008. https://doi.org/10.1177/0192623307310949.

HOEFER, Philipp. Activation of polyhydroxyalkanoates: functionalization and modification. Frontiers in Bioscience, vol. 15, no. 1, p. 93, 2010. https://doi.org/10.2741/3609.

HOERSTRUP, Simon P.; MRCS, Ian Cummings; LACHAT, Mario; SCHOEN, Frederick J.; JENNI, Rolf; LESCHKA, Sebastian; NEUENSCHWANDER, Stefan; SCHMIDT, Dörthe; MOL, Anita; GÜNTER, Christina; GÖSSI, Mathias; GENONI, Michele; ZUND, Gregor. Functional Growth in Tissue-Engineered Living, Vascular Grafts: Follow-Up at 100 Weeks in a Large Animal Model. Circulation, vol. 114, no. 1_suppl, p. I-159-I–166, 2006. https://doi.org/10.1161/circulationaha.105.001172.

HOU, Ruixia; WU, Leigang; WANG, Jin; YANG, Zhilu; TU, Qiufen; ZHANG, Xingcai; HUANG, Nan. Surface-Degradable Drug-Eluting Stent with Anticoagulation, Antiproliferation, and Endothelialization Functions. Biomolecules, vol. 9, no. 2, p. 69, 2019. https://doi.org/10.3390/biom9020069.

HUA, Rixin; TIAN, Yuan; CHENG, Jie; WU, Gensheng; JIANG, Wei; NI, Zhonghua; ZHAO, Gutian. The Effect of Intrinsic Characteristics on Mechanical Properties of Poly(L-lactic acid) Bioresorbable Vascular Stents. Medical Engineering & Physics, vol. 81, p. 118–124, 2020. https://doi.org/10.1016/j.medengphy.2020.04.006.

JAGANATHAN, Saravana Kumar; SUPRIYANTO, Eko; MURUGESAN, Selvakumar; BALAJI, Arunpandian; ASOKAN, Manjeesh Kumar. Biomaterials in cardiovascular research: applications and clinical implications. BioMed research international, vol. 2014, p. 459465, 2014. https://doi.org/10.1155/2014/459465.

JANA, S; TEFFT, B J; SPOON, D B; SIMARI, R D. Scaffolds for tissue engineering of cardiac valves. Acta biomaterialia, vol. 10, no. 7, p. 2877–93, 2014. https://doi.org/10.1016/j.actbio.2014.03.014.

JANJIC, Milka; PAPPA, Fotini; KARAGKIOZAKI, Varvara; GITAS, Christakis; KTENIDIS, Kiriakos; LOGOTHETIDIS, Stergios. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. International Journal of Nanomedicine, vol. Volume 12, p. 6343–6355, 2017. https://doi.org/10.2147/ijn.s138261.

JIAO, Yan-Peng; CUI, Fu-Zhai. Surface modification of polyester biomaterials for tissue engineering. Biomedical Materials, vol. 2, no. 4, p. R24–R37, 2007. https://doi.org/10.1088/1748-6041/2/4/r02.

KIM, Do Young; KIM, Hyung Woo; CHUNG, Moon Gyu; RHEE, Young Ha. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. Journal of microbiology (Seoul, Korea), vol. 45, no. 2, p. 87–97, 2007. .

LEE, Sang Jin; JO, Ha Hyeon; LIM, Kyung Seob; LIM, Dohyung; LEE, Soojin; LEE, Jun Hee; KIM, Wan Doo; JEONG, Myung Ho; LIM, Joong Yeon; KWON, Il Keun; JUNG, Youngmee; PARK, Jun-Kyu; PARK, Su A. Heparin Coating on 3D Printed Poly (l-lactic acid) Biodegradable Cardiovascular Stent via Mild Surface Modification Approach for Coronary Artery Implantation. Chemical Engineering Journal, vol. 378, p. 122116, 2019. https://doi.org/10.1016/j.cej.2019.122116.

MAITZ, M F. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, vol. 1, no. 3, p. 161–176, 2015. https://doi.org/10.1016/j.bsbt.2015.08.002.

MANAVITEHRANI, Iman; FATHI, Ali; BADR, Hesham; DALY, Sean; SHIRAZI, Ali Negahi; DEHGHANI, Fariba. Biomedical Applications of Biodegradable Polyesters. Polymers, vol. 8, no. 1, p. 20, 2016. https://doi.org/10.3390/polym8010020.

MARTIN, David M; BOYLE, Fergal J. Drug-eluting stents for coronary artery disease: a review. Medical engineering & physics, vol. 33, no. 2, p. 148–63, 2011. https://doi.org/10.1016/j.medengphy.2010.10.009.

NAIR, Lakshmi S; LAURENCIN, Cato T. Biodegradable polymers as biomaterials. Progress in Polymer Science, vol. 32, no. 8–9, p. 762–798, 2007. https://doi.org/10.1016/j.progpolymsci.2007.05.017.

NIAOUNAKIS, Michael. Biopolymers: Applications and Trends. , p. 445–505, 2015. https://doi.org/10.1016/b978-0-323-35399-1.00010-7.

O’BRIEN, Barry; CARROLL, William. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: A review. Acta Biomaterialia, vol. 5, no. 4, p. 945–958, 2009. https://doi.org/10.1016/j.actbio.2008.11.012.

ODERMATT, Erich K; FUNK, Lutz; BARGON, Rainer; MARTIN, David P; RIZK, Said; WILLIAMS, Simon F. MonoMax Suture: A New Long-Term Absorbable Monofilament Suture Made from Poly-4-Hydroxybutyrate. International Journal of Polymer Science, vol. 2012, p. 1–12, 2012. https://doi.org/10.1155/2012/216137.

ORMISTON, John A; SERRUYS, Patrick W S. Bioabsorbable Coronary Stents. Circulation: Cardiovascular Interventions, vol. 2, no. 3, p. 255–260, 2009. https://doi.org/10.1161/circinterventions.109.859173.

PAGLIANO, Giorgia; VENTORINO, Valeria; PANICO, Antonio; PEPE, Olimpia. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnology for Biofuels, vol. 10, no. 1, p. 113, 2017. https://doi.org/10.1186/s13068-017-0802-4.

PEREIRA, JDAS. Desenvolvimento de blendas poliméricas de PLA/Amido e PVDF/Amido para aplicações como biomateriais. 2016. 2016.

RAY, Subhasree; KALIA, Vipin Chandra. Biomedical Applications of Polyhydroxyalkanoates. Indian Journal of Microbiology, vol. 57, no. 3, p. 261–269, 2017. https://doi.org/10.1007/s12088-017-0651-7.

RAZA, Zulfiqar Ali; RIAZ, Shahina; BANAT, Ibrahim M. Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnology Progress, vol. 34, no. 1, p. 29–41, 2017. https://doi.org/10.1002/btpr.2565.

REBELO, Rita; FERNANDES, Margarida; FANGUEIRO, Raul. Biopolymers in Medical Implants: A Brief Review. Procedia Engineering, vol. 200, p. 236–243, 2017. https://doi.org/10.1016/j.proeng.2017.07.034.

SEVERINO, Patrícia; SANTANA, Maria Helena A; MALMONGE, Sônia M; SOUTO, Eliana B. Polímeros usados como sistemas de transporte de princípios ativos. Polímeros, vol. 21, no. 5, p. 361–368, 2011. https://doi.org/10.1590/s0104-14282011005000061.

SHRIVASTAV, Anupama; KIM, Hae-Yeong; KIM, Young-Rok. Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed research international, vol. 2013, p. 581684, 2013. https://doi.org/10.1155/2013/581684.

SINGHVI, Mamata; GOKHALE, Digambar. Biomass to biodegradable polymer (PLA). RSC Advances, vol. 3, no. 33, p. 13558, 2013. https://doi.org/10.1039/c3ra41592a.

SNELL, Kristi D; SINGH, Vijay; BRUMBLEY, Stevens M. Production of novel biopolymers in plants: recent technological advances and future prospects. Current Opinion in Biotechnology, vol. 32, p. 68–75, 2015. https://doi.org/10.1016/j.copbio.2014.11.005.

STANKEVICH, Ksenia S; GUDIMA, Alexandru; FILIMONOV, Victor D; KLÜTER, Harald; MAMONTOVA, Evgeniya M; TVERDOKHLEBOV, Sergei I; KZHYSHKOWSKA, Julia. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy. Materials science & engineering. C, Materials for biological applications, vol. 51, p. 117–26, 2015. https://doi.org/10.1016/j.msec.2015.02.047.

STOCK, Ulrich A; SAKAMOTO, Takahiko; HATSUOKA, Shinichi; MARTIN, David P; NAGASHIMA, Mitsugi; MORAN, Adrian M; MOSES, Marsha A; KHALIL, Philipe N; SCHOEN, Frederick J; VACANTI, Joseph P; MAYER, John E. Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. The Journal of Thoracic and Cardiovascular Surgery, vol. 120, no. 6, p. 1158–1167, 2000. https://doi.org/10.1067/mtc.2000.109539.

STOCK, Ulrich A; SCHENKE-LAYLAND, Katja. Wiley Encyclopedia of Biomedical Engineering. 2006. https://doi.org/10.1002/9780471740360.ebs1405.

STROHBACH, Anne; BUSCH, Raila. Polymers for Cardiovascular Stent Coatings. International Journal of Polymer Science, vol. 2015, p. 1–11, 2015. https://doi.org/10.1155/2015/782653.

SZWARC, Michael; SCHUERCH, Conrad. Synthetic Polymers, Biopolymers and Block Polymers. Ciba Foundation symposium, vol. 7, p. 7–22, 2008. https://doi.org/10.1002/9780470719909.ch2.

THOMAS, Anthony W; DOVE, Andrew P. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials. Macromolecular Bioscience, vol. 16, no. 12, p. 1762–1775, 2016. https://doi.org/10.1002/mabi.201600310.

TIAN, Huayu; TANG, Zhaohui; ZHUANG, Xiuli; CHEN, Xuesi; JING, Xiabin. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, vol. 37, no. 2, p. 237–280, 2012. https://doi.org/10.1016/j.progpolymsci.2011.06.004.

UTSUNOMIA, Camila; REN, Qun; ZINN, Manfred. Poly(4-Hydroxybutyrate): Current State and Perspectives. Frontiers in Bioengineering and Biotechnology, vol. 8, p. 257, 2020. https://doi.org/10.3389/fbioe.2020.00257.

VALAPPIL, Sabeel P; MISRA, Superb K; BOCCACCINI, Aldo R; ROY, Ipsita. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing andin vivoresponses. Expert Review of Medical Devices, vol. 3, no. 6, p. 853–868, 2006. https://doi.org/10.1586/17434440.3.6.853.

VENKATRAMAN, Subbu; BOEY, Freddy; LAO, Luciana Lisa. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Progress in Polymer Science, vol. 33, no. 9, p. 853–874, 2008. https://doi.org/10.1016/j.progpolymsci.2008.07.001.

VIJAYENDRA, S V N; SHAMALA, T R. Film forming microbial biopolymers for commercial applications--a review. Critical reviews in biotechnology, vol. 34, no. 4, p. 338–57, 2013. https://doi.org/10.3109/07388551.2013.798254.

WILLIAMS, Simon F; MARTIN, David P. Biopolymers Online. 2002. https://doi.org/10.1002/3527600035.bpol4004.

WILLIAMS, Simon F; MARTIN, David P; MOSES, Arikha C. The History of GalaFLEX P4HB Scaffold. Aesthetic Surgery Journal, vol. 36, no. suppl 2, p. S33–S42, 2016. https://doi.org/10.1093/asj/sjw141.

WILLIAMS, Simon F; RIZK, Said; MARTIN, David P. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedizinische Technik. Biomedical engineering, vol. 58, no. 5, p. 439–52, 2013. https://doi.org/10.1515/bmt-2013-0009.

WU, Li-Qun; BENTLEY, William E; PAYNE, Gregory F. Biofabrication with biopolymers and enzymes: Potential for constructing scaffolds from soft matter. The International Journal of Artificial Organs, , p. 0–0, 2011. https://doi.org/10.5301/ijao.2011.6407.

ZHAO, K; YANG, X; CHEN, G -Q; CHEN, J -C. Effect of lipase treatment on the biocompatibility of microbial polyhydroxyalkanoates. Journal of Materials Science: Materials in Medicine, vol. 13, no. 9, p. 849–854, 2002. https://doi.org/10.1023/a:1016596228316.