In silico evaluation of antimicrobial peptides in medicinal plants: a bioinformatics approach

Main Article Content

Priscila Barbosa de Souza
Swiany Silveira Lima
Patrícia Dias Games

Abstract

Antimicrobial peptides are found in a wide variety of living organisms, including medicinal plants. These are natural molecules and with activity against pathogenic and phytopathogenic bacteria. With growing microbial resistance heading into the post-antibiotic era, the exploration of these peptides by alternative methodologies using bioinformatics tools has become promising. The objective of this work was to prospect antimicrobial peptides from medicinal plants using bioinformatics tools for biotechnological applications. To verify the state of the art, searches were carried out for scientific articles in academic journals from 2018 to 2022. Bioinformatics analyzes were conducted in protein and peptide databases, NCBI, Uniprot/Swiss-Prot, CAMP and APD3 with the terms of the ten families of antimicrobial peptides. Predictions of physical-chemical and toxicity characteristics were performed using Expasy and ToxinPred software, respectively. Many scientific articles were obtained with the research theme, demonstrating the great relevance of the area. The peptides with the highest number of deposits in the databases of medicinal plants were defensins, heveins and knotins. One hevein stood out for its stability in its structure and did not show toxicity to mammalian cells. The study of these peptides can be useful in the design of synthetic molecules that can be exploited for biotechnological applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barbosa de Souza, P. ., Silveira Lima, S., & Dias Games, P. (2024). In silico evaluation of antimicrobial peptides in medicinal plants: a bioinformatics approach. Revista Brasileira Multidisciplinar, 27(3), 92-102. Retrieved from https://revistarebram.com/index.php/revistauniara/article/view/1771
Section
Artigos Originais

References

AZOUBEL, M. S. Como Planejar e Executar buscas na Literatura Científica? Perspectivas em Análise do Comportamento, v. 10, n. 02 p. 256-266, 2020. Disponível em: https://www.revistaperspectivas.org/perspectivas/article/view/627. Acesso em: 07 de mar. de 2023.

BATEMAN, A.; MARTIN, M. J.; ORCHARD, S.; MAGRANE, M.; AGIVETOVA, R.; AHMAD, S.; ALPI, E.; BOWLER-BARNETT, E. H.; BRITTO, R.; BURSTEINAS, B.; BYE-A-JEE, H.; COETZEE, R.; CUKURA, A.; DA SILVA, A.; DENNY, P.; DOGAN, T.; EBENEZER, T. G.; FAN, J.; CASTRO, L. G.; … TEODORO, D. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, V. 49, n. 01, p. 480-489, 2021. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778908/. Acesso em: 07 de mar. de 2023.

DUVAUD, S.; GABELLA, C.; LISACEK, F.; STOCKINGER, H.; IOANNIDIS, V.; DURINX, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Research, v. 49, N. 1, p. 216-227, 2021. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265094/ . Acesso em: 07 de mar. de 2023.

GARCÍA-OLMEDO, F.; RODRÍGUEZ-PALENZUELA, P.; MOLINA, A.; ALAMILLO, J. M.; LÓPEZ-SOLANILLA, E.; BERROCAL-LOBO, M.; POZA-CARRIÓN, C. Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Letters, v. 498, n. 2-3 p. 210-222, 2001. Disponível em: https://febs.onlinelibrary.wiley.com/doi/10.1016/S0014-5793%2801%2902456-5. Acesso em: 07 de mar. de 2023.

GOLDSTEIN, A. M. The NCBI Databases: An Evolutionist’s Perspective. Evolution: Education and Outreach, v. 3, p. 451-455, 2010. Disponível em: https://evolution-outreach.biomedcentral.com/articles/10.1007/s12052-010-0258-5#citeas. Acesso em: 07 de mar. de 2023.

GUPTA, S.; KAPOOR, P.; CHAUDHARY, K.; GAUTAM, A.; KUMAR, R.; RAGHAVA, G. P. S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE, v. 8, no. 9, p. 1-10, 2013. Disponivel em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073957. Acesso em: 08 de mar. de 2023.

JAMSHIDI-KIA, F.; LORIGOOINI, Z.; AMINI-KHOEI, H. Medicinal plants: Past history and future perspective. Journal of HerbMed Pharmacology, v. 7, p 1-7. 2018. Disponivel em: http://herbmedpharmacol.com/Article/jhp-1198. Acesso em: 08 de mar. de 2023.

MAKHLYNETS, O. V.; CAPUTO, G. A. Characteristics and therapeutic applications of antimicrobial peptides. Biophysics Reviews, v. 2, n. 1, 011301, 2021. Disponível em: https://aip.scitation.org/doi/full/10.1063/5.0035731. Acesso em: 07 de mar. de 2023.

MARSHALL, S. H.; ARENAS, G. Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology, v. 6, n. 3, p. 271-284, 2003. Disponível em: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582003000300011. Acesso em: 08 de mar. de 2023.

NELSON, D. L.; COX, M. M. Princípios de bioquímica de Lehninger. 6. ed, Porto Alegre: Artmed, 2014. 1250 páginas.

PIRTSKHALAVA, M.; AMSTRONG, A. A.; GRIGOLAVA, M.; CHUBINIDZE, M.; ALIMBARASHVILI, E.; VISHNEPOLSKY, B.; GABRIELIAN, A.; ROSENTHAL, A.; HURT, D. E.; TARTAKOVSKY, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Research, v. 49, n. 1, p. 288-297, 2021. Disponível em: https://academic.oup.com/nar/article/49/D1/D288/5957160. Acesso em: 07 de mar. de 2023.

RÍOS, J. L.; RECIO, M. C. Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology. v. 100, n. 1–2, p. 80–4, 2005. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378874105003247?via%3Dihub. Acesso em: 08 de mar. de 2023.

SATHOFF, A. E.; SAMAC, D. A. Antibacterial activity of plant defensins. Molecular Plant-Microbe Interactions, v. 32, n. 5, p. 507-514, 2019. Disponível em: https://apsjournals.apsnet.org/doi/full/10.1094/MPMI-08-18-0229-CR. Acesso em: 07 de mar. de 2023.

SELS, J.; MATHYS, J.; DE CONINCK, B. M. A.; CAMMUE, B. P. A.; DE BOLLE, M. F. C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry, v. 46, n. 11, p. 941–50, 2008.. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0981942808001137?via%3Dihub. Acesso em: 08 de mar. de 2023.

SENADHEERA, T. R. L.; HOSSAIN, A.; DAVE, D.; SHAHIDI, F. In Silico Analysis of Bioactive Peptides Produced from Underutilized Sea Cucumber By-Products—A Bioinformatics Approach. Marine Drugs, v. 20, n. 610, p. 2-16, 2022. Disponível em: https://doi.org/10.3390/md20100610. Acesso em: 07 de mar. de 2023.

SLAVOKHOTOVA, A. A.; SHELENKOV, A. A.; ANDREEV, Y. A.; ODINTSOVA, T. I. Hevein-like antimicrobial peptides of plants. Biochemistry (Moscow), v. 82, n. 13 p. 1659-174, 2017. Disponível em: http://protein.bio.msu.ru/biokhimiya/contents/v82/full/82130209.html . Acesso em: 07 de mar. de 2023.

TAM, J. P.; WANG, S.; WONG, K. H.; TAN, W. L. Antimicrobial peptides from plants. Pharmaceuticals, v. 8, n. 4, p. 711–57, 2015. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695807/. Acesso em: 07 de mar. de 2023.

THOMAS, S.; KARNIK, S.; BARAI, R. S.; JAYARAMAN, V. K.; IDICULA-THOMAS, S. CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Research, v. 38, n. 1, p. 774–80, 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808926/. Acesso em: 08 de mar. de 2023.

TUNGMUNNITHUM, D.; THONGBOONYOU, A.; PHOLBOON, A.; YANGSABAI, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, v. 5, n. 3, p. 93 2018. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165118/. Acesso em: 08 de mar. de 2023.

UDENIGWE, C. C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science and Technology, v. 3, N. 2, p. 13-143. 2014. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0924224414000284. Acesso em: 08 de mar. de 2023.

WANG, G.; LI, X.; WANG, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, v. 44, n. 1, p. 1087–93, 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702905/. Acesso em: 07 de mar. de 2023.

WANG, G.; ZIETZ, C. M.; MUDGAPALLI, A.; WANG, S.; WANG, Z. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. Protein Science, v. 1, n. 31, p. 92–106, 2022. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740828/ . Acesso em: 07 de mar. de 2023.

WIMLEY, W. C.; HRISTOVA, K. Antimicrobial peptides: Successes, challenges and unanswered questions. Journal of Membrane Biology, v. 239, n.1–2, p. 27-34. 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166253/. Acesso em: 08 de mar. de 2023.