Nano personal protective equipment against SARS-CoV-2: Insights from a bibliometric analysis of recent publications and patents
Main Article Content
Abstract
In the context of COVID-19, which is a highly contagious disease, the use of personal protective equipment (PPE) is of great importance, both by health professionals and the community in general. As the transmission of the virus is done by inhalation or direct contact with infectious droplets, the use of PPE, especially face masks, has become the “new normal” for societies. However, to improve the filtering and elimination potential of viruses, as well as the breathability and comfort of masks, many studies have been performed in this area. This work evaluated articles and patents on the topic of nanotechnological PPE through a bibliometric analysis. Data were collected from 2016 to 2021, extracted from databases such as PubMed and Web Of Science, and analyzed using bibliometric techniques. In addition, a patent review was carried out to assess current inventions related to the protective mask. The results show that the USA produced the largest number of academic publications related to nanotechnology and personal protective equipment, and India and Brazil also stood out in the number of publications. Among the most discussed nanomaterials for association in PPE were metallic nanoparticles and nanofibers, especially silver nanoparticles. In addition, through the results, the increase in publications on the subject in recent years was highlighted, and it is believed that growth will continue indefinitely, due to the prevention of current and future pandemics.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
• The author (s) warrant that the contribution is original and unpublished and that it is not in the process of being evaluated in other journal (s);
• The journal is not responsible for the opinions, ideas and concepts issued in the texts, as they are the sole responsibility of the author (s);
• Publishers have the right to make textual adjustments and to adapt the article to the rules of publication.
Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License, which allows the sharing of work with acknowledgment of authorship and initial publication in this journal.
Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg publish in institutional repository or as book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are allowed and encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase the impact and citation of the published work (See The Effect of Free Access) at http://opcit.eprints.org/oacitation-biblio.html
References
AKDUMAN, C. Cellulose acetate and polyvinylidene fluoride nanofiber mats for N95 respirators. Journal of Industrial Textiles, v. 50, n. 8, p. 1239–1261, mar. 2021.
AYDEMIR, D.; ULUSU, N. N. Correspondence: Angiotensin-converting enzyme 2 coated nanoparticles containing respiratory masks, chewing gums and nasal filters may be used for protection against COVID-19 infection. Travel Medicine and Infectious Disease, v. 37, p. 101697, out. 2020.
BALACHANDAR, V. et al. COVID-19: emerging protective measures. European Review for Medical and Pharmacological Sciences, v. 24, n. 6, p. 3422–3425, mar. 2020.
BALAGNA, C. et al. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics, v. 1, p. 100006, maio 2020.
BYEON JEONG HOON. MASK WITH METAL CHLORIDE NANO DRY SALT. , 2021. Disponível em: <https://worldwide.espacenet.com/patent/search/family/077923312/publication/KR20210117210A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
CAMPOS, E. V. R. et al. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. Journal of Nanobiotechnology, v. 18, n. 1, p. 125, dez. 2020.
CANALLI BORTOLASSI, A. C. et al. Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal. Nanomaterials, v. 9, n. 12, p. 1740, 6 dez. 2019.
CESAREO, GIULIO GIUSEPPE, R., Laura Giorgia. Method of Treating a Textile with Grafene and Textile so Obtained. Directa Plus S.P.A, 2 dez. 2021a. Disponível em: <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021239663&_cid=P10-L0JJBB-21996-1>
CESAREO, GIULIO GIUSEPPE, R., Laura Giorgia. Textile Article Comprising Graphene and Filters Comprising sair Textile Article. Directa Plus S.P.A, 2 dez. 2021b. Disponível em: <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021239659&_cid=P10-L0JJBB-21996-1>
CHEN GUANGCHUAN; YU HONGGUANG; LI MENGTING. Antibacterial and antiviral master batch for transparent mask, preparation method thereof and antibacterial and antiviral transparent mask. , 2020. Disponível em: <https://worldwide.espacenet.com/patent/search/family/071812015/publication/CN111484710A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
CHOWELL, G.; MIZUMOTO, K. The COVID-19 pandemic in the USA: what might we expect? The Lancet, v. 395, n. 10230, p. 1093–1094, 2020.
DAIM, T. U. et al. Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, v. 73, n. 8, p. 981–1012, out. 2006.
DE ARAÚJO ANDRADE, T. et al. Technological Scenario for Masks in Patent Database During Covid-19 Pandemic. AAPS PharmSciTech, v. 22, n. 2, p. 72, fev. 2021.
EL-ATAB, N.; MISHRA, R. B.; HUSSAIN, M. M. Toward nanotechnology-enabled face masks against SARS-CoV-2 and pandemic respiratory diseases. Nanotechnology, v. 33, n. 6, 19 nov. 2021.
EL-NAHHAL, I. M. et al. Preparation and antimicrobial activity of ZnO-NPs coated cotton/starch and their functionalized ZnO-Ag/cotton and Zn(II) curcumin/cotton materials. Scientific Reports, v. 10, n. 1, p. 5410, dez. 2020.
FAN JIAONA; FAN LINA. Antibacterial medical protective mask. , 30 mar. 2021. Disponível em: <https://worldwide.espacenet.com/patent/search/family/075144848/publication/CN112568522A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
FIGEREZ, S. P. et al. Graphene oxide-based rechargeable respiratory masks. Oxford Open Materials Science, v. 1, n. 1, p. itab003, 23 nov. 2020.
FORNAGUERA, C.; GARCÍA-CELMA, M. J. Personalized Nanomedicine: A Revolution at the Nanoscale. Journal of Personalized Medicine, v. 7, n. 4, p. E12, 12 out. 2017.
FRIEDRICHS, S. AND B. VAN BEUZEKOM. Revised proposal for the revision of the statistical definitions of biotechnology and nanotechnology: OECD Science, Technology and Industry Working Papers. [s.l: s.n.]. Disponível em: <https://www.oecd-ilibrary.org/industry-and-services/revised-proposal-for-the-revision-of-the-statistical-definitions-of-biotechnology-and-nanotechnology_085e0151-en>. Acesso em: 30 jan. 2022.
GONDI, S. et al. Personal protective equipment needs in the USA during the COVID-19 pandemic. The Lancet, v. 395, n. 10237, p. e90–e91, 2020.
HAO SIJIA et al. Flower-shaped graphene, melt-blown cloth, preparation methods of flower-shaped graphene and melt-blown cloth, and mask. , 12 mar. 2021. Disponível em: <https://worldwide.espacenet.com/patent/search/family/074929022/publication/CN112481644A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
HASAN, SHADI WAJIH, M., Musthafa. Multifunctional Filter Materials. Khalifa University of Science and Technology, 6 jan. 2022. Disponível em: <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022003433&_cid=P10-L0JJBB-21996-1>
HIRAGOND, C. B. et al. Enhanced anti-microbial response of commercial face mask using colloidal silver nanoparticles. Vacuum, v. 156, p. 475–482, out. 2018.
HORVÁTH, E. et al. Photocatalytic Nanowires‐Based Air Filter: Towards Reusable Protective Masks. Advanced Functional Materials, v. 30, n. 40, p. 2004615, out. 2020.
JOE, Y. H.; PARK, D. H.; HWANG, J. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading. Journal of Hazardous Materials, v. 301, p. 547–553, 15 jan. 2016.
KAYA, CENGIZ, E., Guncem Ozgun et al. A Modular Antimicrobial and Antiviral Face Mask and A Manufacturing Method Against Epidemics. , 2016. Disponível em: <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016099417&_cid=P10-L0JJBB-21996-2>
KHARAGHANI, D. et al. Preparation and In-Vitro Assessment of Hierarchal Organized Antibacterial Breath Mask Based on Polyacrylonitrile/Silver (PAN/AgNPs) Nanofiber. Nanomaterials, v. 8, n. 7, p. 461, 25 jun. 2018.
KOSTARELOS, K. Nanoscale nights of COVID-19. Nature Nanotechnology, v. 15, n. 5, p. 343–344, maio 2020.
KUMAR, P. et al. Reusable MoS 2 -Modified Antibacterial Fabrics with Photothermal Disinfection Properties for Repurposing of Personal Protective Masks. ACS Applied Materials & Interfaces, v. 13, n. 11, p. 12912–12927, 24 mar. 2021.
LEE, B.-Y. et al. Titanium dioxide-coated nanofibers for advanced filters. Journal of Nanoparticle Research, v. 12, n. 7, p. 2511–2519, set. 2010.
LEE, S. et al. Reusable Polybenzimidazole Nanofiber Membrane Filter for Highly Breathable PM 2.5 Dust Proof Mask. ACS Applied Materials & Interfaces, v. 11, n. 3, p. 2750–2757, 23 jan. 2019.
LEUNG, N. H. L. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, v. 26, n. 5, p. 676–680, 1 maio 2020.
LI, Y. et al. Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, v. 62, n. 1, p. 58–63, jan. 2006.
LIN TONG et al. Nano-fiber and micro-fiber composite anti-haze gauze mask. , 12 dez. 2017. Disponível em: <https://worldwide.espacenet.com/patent/search/family/060552339/publication/CN107455822A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
LIN, Z. et al. Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Research, v. 14, n. 4, p. 1110–1115, abr. 2021.
LIU MINGJIANG. Mask capable of inhibiting bacteria and viruses. , 27 out. 2020. Disponível em: <https://worldwide.espacenet.com/patent/search/family/072924269/publication/CN111820502A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
LOGOTHETIS, STERGIOS, K., Varvara; KARAGKIOZAKI, VARVARA; ORFANOS, ALEXANDRO. NANOFILTER SYSTEM FOR PERSONAL AND MEDICAL PROTECTIVE EQUIPMENT WITH NANO-FACEMASK, RESP. NANO-FACESHIELD AND METHOD OF MANUFACTURING THEREOF. , 2021. Disponível em: <https://worldwide.espacenet.com/patent/search/family/072964746/publication/GR20200100210A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
LU, W.-C. et al. Antibacterial Activity and Protection Efficiency of Polyvinyl Butyral Nanofibrous Membrane Containing Thymol Prepared through Vertical Electrospinning. Polymers, v. 13, n. 7, p. 1122, 1 abr. 2021.
LUSTIG, S. R. et al. Effectiveness of Common Fabrics to Block Aqueous Aerosols of Virus-like Nanoparticles. ACS Nano, v. 14, n. 6, p. 7651–7658, 23 jun. 2020.
MAO, G. et al. Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of The Total Environment, v. 635, p. 1081–1090, set. 2018.
PATIL, N. A. et al. Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic. Chemical Engineering Journal, v. 416, p. 129152, jul. 2021.
RAJAPAKSE, GAMINI, H., Chaminda; THILAKARATHNE, NIRODHA, S., Dharshana; ABEYSOORIYA, NAMAL. Novel and Improved Biodegradable Face Mask with Inherent Virucide, Hydrophobic and Hidrophillic Properties with Adjustable Ear Loops. University of Peradeniya, 2021. Disponível em: <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021229444&_cid=P10-L0JJBB-21996-1>
RAVINDRA, S. et al. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 367, n. 1–3, p. 31–40, set. 2010.
SABINE RIGHETTI, E. G. China passa EUA e lidera produção de ciência mundial pela primeira vez. dez. 2021.
SANDY CHEN; STEPHEN DEVINE. Viral active and/or anti-microbial links and coatings. , 17 nov. 2021. Disponível em: <https://worldwide.espacenet.com/patent/search/family/071135354/publication/GB2595012A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
SHAN, X. et al. Reusable Self-Sterilization Masks Based on Electrothermal Graphene Filters. ACS Applied Materials & Interfaces, v. 12, n. 50, p. 56579–56586, 16 dez. 2020.
SIVRI, Ç. Improvement of protective and comfort properties of face masks using superabsorbent polymer containing nanofibers. International Journal of Clothing Science and Technology, v. 30, n. 5, p. 668–686, 18 set. 2018.
SKARIA, S. D.; SMALDONE, G. C. Respiratory Source Control Using Surgical Masks With Nanofiber Media. The Annals of Occupational Hygiene, v. 58, n. 6, p. 771–781, 1 jul. 2014.
SOARES, S. et al. Nanomedicine: Principles, Properties, and Regulatory Issues. Frontiers in Chemistry, v. 6, p. 360, 2018.
SONI, R. et al. Superhydrophobic and Self-Sterilizing Surgical Masks Spray-Coated with Carbon Nanotubes. ACS Applied Nano Materials, v. 4, n. 8, p. 8491–8499, 27 ago. 2021.
SWAMINATHAN, M.; SHARMA, N. K. Antimicrobial Activity of the Engineered Nanoparticles Used as Coating Agents. Em: MARTÍNEZ, L. M. T.; KHARISSOVA, O. V.; KHARISOV, B. I. (Eds.). Handbook of Ecomaterials. Cham: Springer International Publishing, 2019. p. 549–563.
TANG HAOZHE; LUO SHIMEI. Antibacterial and environment-friendly mask containing zedoary oil nano-particle coating and preparation method thereof. , 30 nov. 2018. Disponível em: <https://worldwide.espacenet.com/patent/search/family/064394383/publication/CN108903087A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
TEBYETEKERWA, M. et al. Electrospun Nanofibers-Based Face Masks. Advanced Fiber Materials, v. 2, n. 3, p. 161–166, jun. 2020.
UDDIN, MOHAMMED JASIM, J., Jared; MOORE, H.JUSTIN. Metal Nanoparticle Enhanced Semiconductor Film for Functionalized Textiles. The Board of Reagents, The University of Texas System, 8 out. 2020. Disponível em: <https://patentscope.wipo.int/search/en/detail.jsf?docId=US307239798&_cid=P10-L0JJBB-21996-1>
ULLAH, S. et al. Reusability Comparison of Melt-Blown vs Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic. ACS Applied Nano Materials, v. 3, n. 7, p. 7231–7241, 24 jul. 2020.
VALDEZ-SALAS, B. et al. Promotion of Surgical Masks Antimicrobial Activity by Disinfection and Impregnation with Disinfectant Silver Nanoparticles. International Journal of Nanomedicine, v. Volume 16, p. 2689–2702, abr. 2021.
VAN NUNEN, K. et al. Bibliometric analysis of safety culture research. Safety Science, v. 108, p. 248–258, out. 2018.
WANG, N. et al. Electret nanofibrous membrane with enhanced filtration performance and wearing comfortability for face mask. Journal of Colloid and Interface Science, v. 530, p. 695–703, nov. 2018.
WANG YONG et al. Um tipo de máscara antiviral reciclável e seu método de preparação. , 23 nov. 2021. Disponível em: <https://worldwide.espacenet.com/patent/search/family/078583606/publication/CN113679124A?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
WIPO- WORLD INTELLECTUAL PROPERTY ORGANIZATION. Innovation Perseveres: International Patent Filings via WIPO Continued to Grow in 2020 Despite COVID-19 Pandemic. , 2 mar. 2021. Disponível em: <https://www.wipo.int/pressroom/en/articles/2021/article_0002.html>
YANG, A. et al. Thermal Management in Nanofiber-Based Face Mask. Nano Letters, v. 17, n. 6, p. 3506–3510, 14 jun. 2017.
YETISEN, A. K. et al. Nanotechnology in Textiles. ACS Nano, v. 10, n. 3, p. 3042–3068, 22 mar. 2016.
YIU, YAU CHUEN et al. PROTECTIVE MASK, AIR FILTRATION ELEMENT AND AIR TREATMENT ELEMENT. , 19 ago. 2021. Disponível em: <https://worldwide.espacenet.com/patent/search/family/077295169/publication/WO2021160178A1?q=%28ctxt%20all%20%22Nanotechnology%22%20OR%20ctxt%20all%20%22Nanoparticle%22%20OR%20ctxt%20all%20%22Nanomaterial%22%29%20AND%20%28ctxt%20all%20%22antiviral%22%20OR%20ctxt%20all%20%22antibacterial%22%29%20AND%20ipc%20any%20%22A41D13%2F11%22>
ZHONG, H. et al. Reusable and Recyclable Graphene Masks with Outstanding Superhydrophobic and Photothermal Performances. ACS Nano, v. 14, n. 5, p. 6213–6221, 26 maio 2020.
ZHU, M. et al. Electrospun Nanofibers Membranes for Effective Air Filtration. Macromolecular Materials and Engineering, v. 302, n. 1, p. 1600353, jan. 2017.
ZOU, Z.; YAO, M. Airflow resistance and bio-filtering performance of carbon nanotube filters and current facepiece respirators. Journal of Aerosol Science, v. 79, p. 61–71, jan. 2015.