PHOTOBIOMODULATORY EFFECT OF LOW-INTENSITY LASER RADIATION ON MULTICELLULAR SPHEROIDS
Contenido principal del artículo
Resumen
Photobiomodulatory effects of low-intensity laser radiation (LILR) in cells cultured in standard, two-dimensional conditions are well established. Conversely, the characteristics of this effect in three-dimensional (3D) cultures, which are currently recommended due to the greater similarity with cellular behavior in vivo, have not yet been widely investigated. The objective of this work was to analyze the biomodulator effect of LILR, on the wavelength (λ) of 685 nm, on the constitution process and on the viability of cells cultured as multicellular spheroid (MSs). For this, agarose molds containing microwells were seeded (2x105 cell/ml) with osteogenic precursor cells (OPCs - MC3T3-E1) and kept under ideal culture conditions. The molds were irradiated for five consecutive days with doses of 0.5, 1.0 and 1.5 J/cm², the first irradiation being performed immediately after sowing. The process of constitution of MSs was analyzed and the cultures were submitted to the cell viability test. The results demonstrated that the LILR at λ 685 nm exerted a dose-dependent biomodulatory effect on cell metabolism and on the process of constituting the MSs of OPCs. These results demonstrate the potential of photobiomodulation to contribute to the process of constituting MSs, which can be explored in the strategies of multicellular spheroids therapy used in regenerative medicine and bioprinting.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
- O(s) autor(es) autoriza(m) a publicação do artigo na revista;
• O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
• A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
• É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigo às normas da publicação.
Os conteúdos da Revista Brasileira Multidisciplinar – ReBraM estão licenciados sob uma Licença Creative Commons 4.0 by.
Qualquer usuário tem direito de:
- Compartilhar — copiar, baixar, imprimir ou redistribuir o material em qualquer suporte ou formato.
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os seguintes termos:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de maneira alguma que sugira ao licenciante a apoiar você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.
Autores concedem à ReBraM os direitos autorais, com o trabalho simultaneamente licenciado sob a Licença Creative Commons 4.0 by. , que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Citas
ACHILLI, TM; MEYER, J; MORGAN, JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, v. 12, p. 1347-1360, 2012.
ASAI, T; SUZUKI, H; KITAYAMA, M; MATSUMOTO, K; KIMOTO, A; SHIGEOKA, M; KOMORI, T. The Long-term Effects of Red Light-emitting Diode Irradiation on the Proliferation and Differentiation of Osteoblast-like MC3T3-E1 Cells. Kobe J. Med. Sci., v.60, n.1, p.E12-E18, 2014.
DE FREITAS, LF; HAMBLIN, MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Topics Quantum Electron, v. 22, 2016.
CANADAS, RF; PIRRACO, RP; OLIVEIRA, JM; REIS, RL; MARQUES, AP. Stem Cells for Osteochondral Regeneration. Adv Exp Med Biol., v.1059, p.219-240, 2018.
CSETE, M. Regenerative Medicine. Transfusion Medicine and Hemostasis. 3º Edition.Clinical and Laboratory Aspects, cp.86, p. 527-531, 2019.
DOLAN, CP; DAWSON, LA; MUNEOKA, K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Translational Medicine, v.7, p.1-9, 2018.
EDMONDSON, R; BROGLIE, JJ.; ADCOCK, AF.; YANG, L. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay and Drug Development Technologies, n.12, v.4, p.207-218, 2014.
FENNEMA, E; RIVRON, N; ROUWKEMA, J; VAN BLITTERSWIJK, C; DE BOER, J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol, n.31, p. 108–115, 2013.
FRESHNEY, RI. Basic Principles of Cell Culture. Gordana Vunjak-Novakovic, p. 3-22, 2006.
HUANG, BW; GAO, JQ. Application of multicellular spheroid tumor models cultured in 3D in the research of drug delivery systems targeting tumors. J Control Release, n.270, p.246–259, 2018.
IMURA, T; OTSUKA, T; KAWAHARA, Y; YUGE, L. “Microgravity” as a unique and useful stem cell culture environment for cell-based therapy. Regenerative Therapy, v.12, p. 2-5, 2019.
KARU, TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation.Photochem Photobiol., v. 84, n.5, p.1091-1099, 2008.
KIJANSKA, M; KELM, J. In vitro 3D spheroids and microtissues: ATP-based cell viability and toxicity assays. In: Sittampalam, G.S., Coussens, N.P., Nelson, H., Arkin, M., Auld, D., Austin, C. (Eds.), Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD), 2004.
LABARBERA, DV.; REID, BG.; YOO, BH. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin. Drug Discovery, v.7, p. 819–830, 2012.
LASCHKE, MW.; MENGER, MD. Life is 3D: Boosting Spheroid Function for Tissue Engineering. Trends Biotechnol., n.35, p.133–144, 2017.
MARQUES, MM; DINIZ, IM; DE CARA, SP; PEDRONI, AC; ABE, GL; D'ALMEIDA-COUTO, RS; LIMA, PL; TEDESCO, TK, MOREIRA, MS. Photobiomodulation of Dental Derived Mesenchymal Stem Cells: A Systematic Review. Photomed Laser Surg., v. 34, n.11, p.500-508, 2016.
MATSUSAKI, M; CASE, CP; AKASHI, M. Three-dimensional cell culture technique and pathophysiology. Adv. Drug Deliv. Rev., v.74, p.95–103, 2014.
MENG, Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin. Drug Metab. Toxicol, v. 6, p.733–746, 2010.
MOLDOVAN, NI.; HIBINO, N; NAKAYAMA, K. Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng. Part B Rev., v. 23, p. 237–244, 2017.
MOLINARO, E; CAPUTO, LF; AMENDOEIRA, MR. Conceitos e Métodos para formação de profissionais em laboratórios de saúde – volume 2. Rio de Janeiro: EPSJV/Instituto Oswaldo Cruz, 2010.
NAPOLITANO, AP.; CHAI, P; DEAN, DM.; MORGAN, J R. Dynamics of the selfassembly of complex cellular aggregates on micromoldednonadhesive hydrogels. Tissue engineering, v. 13, n. 8, p. 2087-2094, 2007.
NATH, S; DEVI, G R. Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol. Ther, v.163, p. 94–108, 2016.
OLIVEIRA FA; MATOS, AA; SANTESSO, MR; TOKUHARA, CK, LEITE, AL; BAGNATO, VS; MACHADO, MA; PERES-BUZALAF, C; OLIVEIRA, RC. Low intensity lasers differently induce primary human osteoblast proliferation and differentiation. J Photochem Photobiol B, v. 163, p.4– 21, 2016.
ONG, CS; FUKUNISHI, T; NASHED, A; BLAZESKI, A; ZHANG, H; HARDY, S; DISILVESTRE, D; VRICELLA, L; CONTE, J; TUNG, L; TOMASELLI, G; HIBINO, N. Creation of cardiac tissue exhibiting mechanical integration of spheroids using 3D bioprinting. J. Vis. Exp, n.125, e55438, 2017.
O'SULLIVAN, GM; VELICKOVIC, ZM; KEIR, MW; MACPHERSON, JL; RASKO, JEJ. Cell and gene therapy manufacturing capabilities in Australia and New Zealand. Cytotherapy, v.21, n.12, p.1258-1273, 2019.
PAGÉ, B, PAGÉ, M, NOEL, C. A new fluorometric assay for cytotoxicity measurements in-vitro. International Journal Oncology, v.3, p.473-476, 1993.
PASSARELLA, S; KARU, T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. Journal of Photochemistry and Photobiology B: Biology, n.140, p.344-58, 2014.
SAMPOGNA, G; GURAYA, SY; FORGIONE, A. Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure, v. 3, n. 3, p. 101–107, 2015.
SATO, R et al. Three-Dimensional Spheroidal Culture Visualization of Membranogenesis of Bruch’ s Membrane and Basolateral Functions of the Retinal Pigment Epithelium. Retinal Cell Biology, v. 54, n. 3, p. 1740–1749, 2016.
SIMIAN, M; BISSELL, M. J. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. n.216, p. 31–40, 2016.
SUTHERLAND, RM; MCCREDIE, JA; INCH, WR. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl. Cancer Inst. n.46, p.113-120, 1971.
SCHMIDT, M; SCHOLZ, CJ; POLEDNIK, C; ROLLER, J. Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer. Oncology Reports, v.35, n.4, p.2431-40, 2016.
SHOJAEI, F; RAHMATI, S; BANITALEBI DEHKORDI, M. A review on different methods to increase the efficiency of mesenchymal stem cell-based wound therapy. Wound Repair Regen, 2019.
TOMASI, RFX; SART, S; CHAMPETIER, T; BAROUD, CN. Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array. Cell Reports, v.31, n.8, 107670, 2020.
THOMA, CR.; ZIMMERMANN, M; AGARKOVA, I; KELM, JM; KREK, W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv. Drug Deliv. Rev. v.69, p. 29–41, 2014.
TSAI, SR; HAMBLIN, MR. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B: Biology, v.170, p.197-207, 2017.
VADIVELU, RK.; KAMBLE, H; SHIDDIKY, MJA; NGUYEN, NT. Microfluidic Technoloy for the Generation of Cell Spheroids and Their Applications. Micromachines, v. 8, n.4, p.94, 2017.
XU, F; WU, J; WANG, S; DURMUS, NG; GURKAN, UA; DEMIRCI, U. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication, v. 3, n. 3, 2011.
WANG, C; CHENG, L; LIU, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics, v.3, n.5, p. 317-330, 2013.
ZANONI, M. et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Nature Scientific Reports, v. 6, n. 19103, p. 1–11, 2016.
ZHANG, J; SCHWARTZ, MP; HOU, Z; BAI, Y; ARDALANI, H; SWANSON, S; STEILL, J; RUOTTI, V; ELWELL, A; NGUYEN, BK; BOLIN, J; STEWART, R; THOMSON, JA; MURPHY, WL. A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture. Stem Cell Reports., v.8, n.4, p.907-918, 2017.
ZHU, W; GEORGE, JK; SORGER, VJ; ZHANG, LG. 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication. v. 9, n.2, p. 1-10, 2017.