Lipid Quality of Amazonian’s Native Fish, Overview and Market Outlook of Brazilian Fish Farming
Contenido principal del artículo
Resumen
The aimed of this study was to carry out a bibliometric survey on the lipid composition Amazonian’s native fish and the international aquaculture overview, Brazilian aquaculture overview, native farmed fish production, characteristics of Brazilian fish meat, nutritional aspects and benefits of native fish consumption and market outlook of Brazilian fish farming. This is a data collection study that is characterized as being of an exploratory descriptive, with a qualitative character, aiming to analyze, systematize, compare and cross data between different scientific literatures related to the theme. The searches in Web, storage and data analysis were carried out from March to August 2021. The bibliographic bases for carrying out the searches were Scopus, Web Science, Elsevier, Hindawi, Scielo, Wiley, CAPES/Brasil Journals and institutional repositories. Searched for descriptors in Portuguese and English language, with words and terms separated by the Boolean operators 'AND' and 'OR'. In addition to being sustainable, consuming native farmed fish is a healthy choice from a nutritional point of view, because they contain monounsaturated and polyunsaturated fatty acids that are related to an anti-inflammatory effect and a lower propensity for cardiovascular diseases in consumers. Regarding the production chain problems, market studies must be carried out for each region of Brazil. In addition, more investment in integrated crop systems is needed. In other words, quality certification is needed to universalize native Brazilian fish. Therefore, the future of Brazilian fish will depend on better dissemination to attract different market niches
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- O(s) autor(es) autoriza(m) a publicação do artigo na revista;
• O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
• A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
• É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigo às normas da publicação.
Os conteúdos da Revista Brasileira Multidisciplinar – ReBraM estão licenciados sob uma Licença Creative Commons 4.0 by.
Qualquer usuário tem direito de:
- Compartilhar — copiar, baixar, imprimir ou redistribuir o material em qualquer suporte ou formato.
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os seguintes termos:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de maneira alguma que sugira ao licenciante a apoiar você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.
Autores concedem à ReBraM os direitos autorais, com o trabalho simultaneamente licenciado sob a Licença Creative Commons 4.0 by. , que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Citas
ACKMAN, R. G. Nutritional composition of fats in seafoods. Progress in Food & Nutriton Science, v. 13, n. 3-4, p. 161-289, 1989.
ALBUQUERQUE, C. F. G.; MORAES, I. M. M.; OLIVEIRA, F. M. J.; BURTH, P.; BOZZA, P. T.; ... FARIA, M. V. C. et al. Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLoS ONE, v. 11, e0153607. https://doi.org/10.1371/journal.pone.0153607
ANTONELO, D. S.; GÓMEZ, J. F. M.; GOULART, R. S.; BELINE, M.; CÔNSOLO, N. R. B. ... CORTE RRS, et al. Performance, carcass traits, meat quality and composition of non-castrated Nellore and crossbred male cattle fed soybean oil. Livestock Science, 2020. https://doi.org/10.1016/j.livsci.2020.104059
AKPINAR, M. A.; GORGUN, S.; AKPINAR, A. E. A comparative analysis of the fatty acid profiles in the liver and muscles of male and female Salmo trutta macrostigma. Food Chemistry, v. 112, 2009. https://doi.org/10.1016/j.foodchem.2008.05.025
AL-KHALAIFAH, H.; AL-NASSER, A.; GIVENS, D. I.; Comparison of different dietary sources of n-3 polyunsaturated fatty acids on immune response in broiler chicken. Heliyon, v. 6, e03326, 2020. https://doi.org/10.1016/j.heliyon.2020.e03326
BARROWS, F. T.; BELLIS, D.; KROGDAHL A.; SILVERSTEIN, J. T.; HERMAN, E. M.; ...SEALEY, W. M. et al. Report of the plant products in aquafeed strategic planning workshop: An integrated, interdisciplinary research roadmap forincreasing utilization of plant feedstuffs in diets for carnivorous fish. Reviews in Fisheries Science, v. 16, p. 449-455, 2008. https://doi.org/10.1080/10641260802046734
BATALHA, O. S.; ALFAIA, S. S.; CRUZ, F. G. G.; JESUS, R. S.; RUFINO, J. P. F.; COSTA, V. R. Physicochemical characteristics and digestibility of acid silage flour from pirarucu residue in light commercial laying hens. Acta Scientiarum. Animal Sciences, v. 39, n. 3., p. 251-257, 2017. https://doi.org/10.4025/actascianimsci.v39i3.35112
BUENO-HERNANDEZ, N.; SIXTO-ALONSO, M. S.; MILKE, M. D. G. Effect of Cis-palmitoleic (an ômega-7 fatty acid) supplementation on inflammation and expression of HNF4-γ, HNF4-α and IL-6 in patients with ulcerative colitis: a double-blind, randomized pilot study. Minerva Gastroenterologica Dietologica, 2017. https://doi.org/10.23736/S1121-421X.17.02367-4
CHAIJAN, M.; JONGJAREONRAK, A.; PHATCHARAT, S.; BENJAKUL, S.; RAWDKUEN, S. Chemical compositions and characteristics of farm raised giant catfish (Pangasianodon gigas) muscle. LWT - Food Science and Technology, v. 43, n. 3, p. 452-457, 2010. https://doi.org/10.1016/j.lwt.2009.09.012
COUTINHO, N. M.; CANTO, A. C. V. C.; MARSICO, E. T.; SILVA, F. A.; KELLER, L. A. M.; CONTE-JUNIOR, C. A.; MONTEIRO, M. L. G. Fatty acid composition and influence of temperature on the lipid stability of Arapaima gigas meat. Brazilian Journal of Food Technology, v. 22, e2018132, 2019. https://doi.org/10.1590/1981-6723.13218
BRASIL. Ministério da Pesca e Aquicultura. Censo aquícola nacional. Brasília: República Federativa do Brasil. Brasília: MPA, 2013.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Decreto n° 9.013, de março de 2017. Aprova o Regulamento da inspeção e sanitária de produtos de origem animal (RIISPOA). Diário Oficial da União: seção 1, Brasília, DF, ed. 62th, p. 3-27, 2017.
CAVALI, J.; MARMENTINI, R. P.; DANTAS FILHO, J. V.; PONTUSCHKA, R. P.; SCHONS, S. V. Fatty acid profile, omegas, and lipid quality in commercial cuts of tambaqui (Colossoma macropomum Cuvier, 1818) cultivated in ponds. Boletim do Instituto de Pesca, v. 48, e700, 2022. https://doi.org/10.20950/1678-2305/bip.2022.48.e700
CAVALI, J.; DANTAS, J. V.; NUNES, C. T.; FERREIRA, E.; PONTUSCHKA, R. B.; ZANELLA, R.; SOUZA, M. L. R. Fatty acid profile, omegas and lipid quality in commercial cuts of pirarucu (Arapaima gigas Schinz, 1822) cultivated in excavated tanks. Acta Scientiarum. Animal Sciences, 2023 (Manuscript accepted).
CAVALI, J.; NÓBREGA, B. A.; DANTAS-FILHO, J. V.; FERREIRA, E.; PORTO, M. O.; PONTUSCHKA, R. B.; FREITAS, T. F. Morphometric evaluations and yields from commercial cuts of black pacu Colossoma macropomum (Cuvier, 1818) in different body weights. The Scientific World Journal, 2021. https://doi.org/10.1155/2021/3305286
CAYGILL, C. P. J.; HILL, M. J. Fish, n-3 fatty-acids and human colorectal and breast-cancer mortality. European Journal of Cancer Prevention, v. 4, p.329-332, 1995. https://doi.org/10.1097/00008469-199508000-00008
CIRNE, L. G. A.; SOUZA, W. S.; BRITO, P. F.; SOUZA, J. R.; FELTRAN, R. B.; ... SANTOS, M. R. et al. Quality of tambaqui meat slaughtered with different weight classes. Bulletin of Animal Husbandry, v. 76, e1459, 2019. https://doi.org/10.17523/bia.2019.v76.e1459
CORTEGANO, C. A. A.; GODOY, L. C.; PETENUCI. M. E.; VISENTAINER, J. V.; AFFONSO, E. G.; GONÇALVES, L. U. Nutritional and lipid profiles of the dorsal and ventral muscles of wild pirarucu (Arapaima gigas). Pesquisa Agropecuária Brasileira, v. 52, n. 4, p. 271-276, 2017. https://doi.org/10.1590/S0100-204X2017000400007
DANTAS FILHO, J. V.; PONTUSHCKA, R. B.; ROSA, B. L.; GASPAROTTO, P. H.G.; MARMENTINI, R. P.; CAVALI, J. Mineral composition in commercial cuts of Colossoma macropomum (Cuvier, 1818) and Arapaima gigas (Schinz, 1822) in ideal weight class for commercialization. Acta Veterinaria Brasilica, v. 16, n. 2, p. 172-179, 2022. https://doi.org/10.21708/avb.2022.16.2.10851
ERKAN, N.; BILEN, G. Effect of essential oils treatment on the frozen storage stability of chub mackerel fillet. Journal fur Verbraucherschutz und Lebensmittelsicherheit, v. 5, p. 101-110, 2010. https://doi.org/10.1007/s00003-009-0546-6
FRANCO, L. L. K.; NOLETO, S. S.; SANTOS, V. R. V.; BEM LD, KIRSCHNIK PG. Yield and proximate composition of tambaqui (Colossoma macropomum) by different neck categories. Brazilian Journal of Hygienic and Animal Health, v. 12, n. 2, p. 223-235, 2018.
FRIGOLET, M. E.; GUTIÉRREZ-ANGUILAR, R. The role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Advances in Nutrition, v. 8, n. 1, p. 173-181, 2017. https://doi.org/10.3945/an.115.011130
FROUZ, J.; FROUZOVÁ, J. (Eds.). Fisheries and Aquaculture. In: Applied Ecology. Springer, Cham. 2022. https://doi.org/10.1007/978-3-030-83225-4_4
GASCO, L.; GAI, F.; MARICCHIOLO, G.; GENOVESE, L.; RAGONESE, S.; BOTTARI, T.; CARUSO, G. Fishmeal Alternative Protein Sources for Aquaculture Feeds. Feeds for the Aquaculture, 2018. https://doi.org/10.1007/978-3-319-77941-6_1
GULTEKIN, G.; SAHIN, H.; INANC, N.; UYANIK, F.; OK, E. Impact of Omega-3 and Omega-9 fatty acids enriched total parenteral nutrition on blood chemistry and inflammatory markers in septic patients. Pakistan Journal of Medical Sciences, v. 30, n. 2, p. 299-304, 2014.
GONÇALVES, L. U.; CORTEGANO, C. A. A.; BARONE, R. S. C.; LORENZ, E. K.; CYRINO, J. E. P. Effects of dietary linolenic acid to linoleic acid ratio on growth performance, proximate composition and fatty acid contents of pacu (Piaractus mesopotamicus). Aquaculture Research, 2021. https://doi.org/10.1111/are.15536
HARRIS, W. S.; MOZAFFARIAN, D.; LEFEVRE, M.; TONES, C. D.; COLOMBO J, ... CUNNANNE SC, et al. Towards establishing dietarr reference intakes for eicosapentaenoic and docosahexaenoic acids. Journal of Nutrition, v. 139, n. 4, p. 804-819, 2009. https://doi.org/10.3945/jn.108.101329
HAUTRIVE, T. P.; MARQUES, A. C.; KUBOTA, E. H. Proximate composition of ostrich meat. Food and Nutrition Journal, v. 23, p. 327-334, 2012.
HALILOGLU, H. B.; BAYIR, A.; NECDET-SIRKECIOGLU, A.; MEVLUT-ARAS, N.; ATAMANALP, M. Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chemistry, v. 86, p. 55-60, 2004. https://doi.org/10.1016/j.foodchem.2003.08.028
HERNÁNDEZ-MARTÍNEZ, M.; GALLARDO-VELÁZQUEZ, T.; OSORIO-REVILLA, G.; CASTAÑEDA-PÁREZ, E.; URIBE-HERNÁNDEZ K. Characterization of Mexican fishes according to fatty acid profile and fat nutritional indices. International Journal of Food Properties, v. 19, n. 6, p. 1401-1412, 2016. https://doi.org/10.1080/10942912.2015.1079787
KLEIN-SZANTO, A. J. P.; BASSI, D. Keep recycling going: new approaches to reduce LDL-C. Biochemical Pharmacology, v. 164, p. 336-341, 2019. https://doi.org/10.1016/j.bcp.2019.04.003
KRATZ, M.; MARCOVINA, S.; NELSON, J. E.; YEH, M. M.; KOWDLEY, K. V.; CALLAHAN, H. S.; UTZSCHNEIDER, K. M. Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans. The American Journal of Clinical Nutrition, v. 99, n. 6, p. 1385-1396, 2014. https://doi.org/10.3945/ajcn.113.075457
LEITE, A.; RODRIGUES, S.; PEREIRA, E.; PAULOS, K.; OLIVEIRA, A. F.; LORENZO, J. M.; TEIXEIRA, A. Physicochemical properties, fatty acid profile and sensory characteristics of sheep and goat meat sausages manufactured with different pork fat levels. Meat Science, v. 105, p. 114-120. https://doi.org/10.1016/j.meatsci.2015.03.015
LIMA, L. K. F.; NOLETO, S. S.; SANTOS, V. R. V.; LUIZ, D. B.; KIRSCHNI, P. G. Yield and centesimal composition of tambaqui (Colossoma macropomum) by different processing forms and weight categories. Brazilian Journal of Animal Hygiene and Health, v. 12, n. 2, p. 223-235, 2018.
LI, M. H.; MINCHEW, C. D.; OBERLE, D. F.; ROBINSON, E. H. Evaluation of glycerol from biodiesel production as a feed ingredient for channel catfish, Ictalurus punctatus. Journal of the World Aquaculture Society, v. 41, n. 130-136, 2010. https://doi.org/10.1111/j.1749-7345.2009.00320.x
LU, J.; TAKEUCHI, T.; OGAWA, H. Flesh quality of tilapia Oreochromis niloticus fed solely on raw Spirulina. Fisheries Science, v. 69, p. 529-537, 2003. https://doi.org/10.1046/j.1444-2906.2003.00653.x
LUIZ, D. B.; OLIVEIRA, I. S.; CAVALI, J.; LUNDSTEDT, L. M.; FLORES, R. M. V.; DANTAS-FILHO, J. V. Caminhos para organização da cadeia da Aquicultura da Amazônia – Perspectivas econômicas e relevância social e ambiental: Potencialidades da bioeconomia do pescado na Amazônia. In: Paolinelli A. (Eds.). As soluções sustentáveis que vêm dos Trópicos: Desenvolver sem desmatar por um novo pacto Global do alimento. Brasília: Garcia Editora, 2022.
MADSEN, L.; VAAGENES, H.; BERGE, K.; DRYROY, E.; BERGE, R. K. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids, v. 34, n. 9, p. 951-963, 1999. https://doi.org/10.1007/s11745-999-0445-x
MAHAN, K. L.; ESCOTT-STUMP, S. K. Alimentos, Nutrição e Dietoterapia. 14. ed. São Paulo: Roca, 2018.
MANHEZI, A. C.; MAR, M.; BACHIONI, M. M.; PEREIRA, A. L. The use of essential fatty acids in the treatments of wounds. Brazilian Nursing Journal, v. 6, p. 620-629, 2008. https://doi.org/10.1590/s0034-71672008000500015
MARTINO, R. C.; CYRINO, J. E.; PORTZ, L.; TRUGO, L. C. Performance and fatty acid composition of surubim (Pseudoplatystoma coruscans) fed diets with animal and plant lipids. Aquaculture, v. 209, p. 233-246, 2002. https://doi.org/10.1016/S0044-8486(01)00847-X
MARTINS, W. S.; OETTERER, M. Correlation between the nutritional value and the price of eight species of fish marketed in the state of São Paulo. Boletim do Instituto de Pesca, v. 36, n. 4, p. 277-282, 2011.
MARMENTINI, R. P.; SILVA, L. F.; GOTARDI, D. G.; OLIVEIRA, I. S.; FRANCK, K. M.…DANTAS-FILHO, J. V. et al. Tecnologias da Informação aplicadas à Engenharia de Pesca e Aquicultura. In: Dantas-Filho JV, Gasparotto PHG, Cavali J, Schons SV, (Eds.). Tecnologias Agropecuárias e Ambientais. São José dos Pinhais, PR: Brazilian Journals. 2022. https://doi.org/10.35587/brj.ed.0001701
MATTOS, B. O.; PANTOJA-LIMA J.; OLIVEIRA, A. T. (Eds.). Aquicultura na Amazônia: estudos técnico-científicos e difusão de tecnologias. Ponta Grossa - PR: Atena, 2021.
MEANTE, R. E. X.; DÓRIA, C. R. C. Characterization of the fish production chain in state of Rondônia: development and limiting factors. Revista de Administração e Negócios da Amazônia, v. 9, n. 4, p. 164-181, 2017. https://doi.org/10.18361/2176-8366/rara.v9n4p164-181
MEMON, N. N.; TALPURF, F.; BHANGER, M. I.; BALOUCH, I. Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chemistry, v. 126, p.405-40, 2011. https://doi.org/10.1016/j.foodchem.2010.10.107
MORAES, I. M. M.; ALBUQUERQUE, C. F. G.; KURZ, A. R. M.; OLIVEIRA, F. M. J.; ABREU, V. H. P.; ... TORRES, R. C. et al. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Hindawi Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/6053492
NRC. National Research of Council. Nutrient requirements of fish and shrimp. National Washington, DC: Academies Press of the NRC, 2011.
NUNES, E. S. C. L.; FRANCO, R. M.; MÁRSICO, E. T.; NOGUEIRA, E. B.; NEVES, M. S.; SILVA, F. E. R. Presence of bacteria that indicate hygienic-sanitary conditions and pathogens in Pirarucu (Arapaima gigas Schinz, 1822) dry salty sold in supermarkets and public fairs in the city of Belém, Pará. Brazilian Journal of Veterinary Science, v. 19, n. 2, p. 98-103, 2012. https://doi.org/10.4322/rbcv.2014.084
OLIVEIRA, P. R.; JESUS, R. S.; BATISTA, G. M.; LESSI, E. Sensorial, physicochemical and microbiological assessment of pirarucu (Arapaima gigas, Schinz 1822) during ice storage. Brazilian Journal of Food Technology, v. 17, p. 67-74, 2014. https://doi.org/10.1590/bjft.2014.010
ORDÓÑEZ, J. A. (Eds.). Food Technology - Food of Animal Origin. Porto Alegre: Artmed, 2005.
PAL, J.; SHUKLA, B. N.; MAURYA, A. K.; VERMA, H. O.; PANDEY, G. et al. A review on role of fish in human nutrition with special emphasis to essential fatty acid. International Journal of Fisheries and Aquatic Studies, v. 6, p. 427-30, 2018.
PASSOS, M. E. P.; ALVES, H. H. O.; MOMESSO, C. M.; FARIA, F. G.; MURATA, G.; CURY-BOAVENTURA MF, GORJÃO R. Differential effects of palmitoleic acid on human lymphocyte proliferation and function. Lipids in Health and Disease, 2016. https://doi.org/10.1186/s12944-016-0385-2
PETENUCI, M. E.; SANTOS, V. J.; GUALDA, I. P.; LOPES, A. P.; SCHNEIDER, V. V. A.; ... SANTOS, O. O. et al. Fatty acid composition and nutritional profiles of Brycon spp. from central Amazonia by different methods of quantification. Journal of Food Science and Technology, v. 56, n. 3, p. 1551-1558, 2019. https://doi.org/10.1007/s13197-019-03654-4
PONTUSCHKA, R. B.; ARAUJO, A. T.; SILVA, M. A. C.; DANTAS FILHO, J. V.; MARMENTINI, R. P.; SCHONS, S. V.; CAVALI, J. Hygienic and sanitary characteristics of dry salted fish marketed in Porto Velho city, Rondônia – Brazil. Acta Veterinaria Brasilica, v. 16, n. 3, p. 232-241, 2022. https://doi.org/10.21708/avb.2022.16.3.10747
RIBEIRO, M. S.; FONSECA, F. A. L.; QUEIROZ, M. N.; AFFONSO, E. G.; CONCIÇÃO, L. E. C.; GONÇALVES, L. G. Fish protein hydrolysate as an ingredient in diets for Arapaima gigas juveniles. Boletim do Instituto de Pesca, v. 44, n. (ed. Especial), p. 85-92, 2017. https://doi.org/10.20950/1678-2305.2017.85.92
RODRIGUES, B. L.; MONTEIRO, M. L. G.; CANTO, A. C. V. C. S.; COSTA, M. P.; CONTE, JUNIOR, C. A. Proximate composition, fatty acids and nutritional indices of promising freshwater fish species from Serrasalmidae family. CyTA - Journal of Food, v. 18, p. 591-598, 2020. https://doi.org/10.1080/19476337.2020.1804463
RODRIGUES, B. L.; CANTOS, A. C. V. C. S.; COSTA, M. P.; SILVA, F. A.; MÁRSICO, E. T.; CONTE JUNIOR, C. A. Fatty acid profiles of five farmed Brazilian freshwater fish species from different families. PLoS ONE, 2017. https://doi.org/10.1371/journal.pone.0178898
SALES, R. O.; MAIA, E. L. Chemical composition and classes of lipids in freshwater fish tambaqui, Colossoma macropomum. Brazilian Journal of Animal Hygiene and Health, v. 7, n. 2, p. 31-44, 2013.
SANTOS-SILVA, J.; BESSA, R. J. B.; SANTOS-SILVA, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livestock Production Science, v. 77, 187-194, 2002. https://doi.org/10.1016/S0301-6226(02)00059-3
SARTORI, A. G. O.; AMÂNCIO, R. D. Fish: nutritional importance and consumption in Brazil. Food and Nutritional Security Journal, v. 19, n. 1, p. 83-93, 2012. https://doi.org/10.1590/1678-457X.04416
SINN, N. Physical fatty acid deficiency signs in children with ADHD symptoms. Prostaglandins, Leukotrienes and Essential Fatty Acids, p. 109-115, 2007. https://doi.org/10.1016/j.plefa.2007.08.002
SIQUEIRA, K. B.; NUNES, R. M.; BORGES, C. A. V.; PILATI, A. F.; MARCELINO, G. W.; GAMA, M. A. S.; SILVA, P. H. F. Cost-benefit ratio of the nutrients of the food consumed in Brazil. Ciência & Saúde Coletiva, v. 25, n. 3, p. 1129-1135, 2018. https://doi.org/10.1590/1413-81232020253.11972018
SOBCZAK, A. I. S.; BLINDAUER, C. A.; STEWART, A. J. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients, 2022. https://doi.org/10.3390/nu11092022
SOKAMTE, T. A.; MBOUGUENG, P. D.; MOHAMMADOU, B. A.; TATSADJIEU, N. L.; SACHIDRA, N. M. Proximal composition and fatty acid profile of fresh and smoked fillets of Pangasius hypophthalmus. Scientific African, 2020. https://doi.org/10.1016/j.sciaf.2020.e00534
SOUZA, C. O.; TEIXEIRA, A. A.; BIONDO, L. A.; SILVEIRA, L. S.; CALDER, P. C.; ROSA NETO, J. C. Palmitoleic acid reduces the inflammation in LPS-stimulated macrophages by inhibition of NFκB, independently of PPARs. Clinical and Experimental Pharmacology and Physiology, v. 44, n. 5, p. 566-575, 2017. https://doi.org/10.1111/1440-1681.12736
TACON, A. G. J.; LEMOS, D.; METIAN, M. Fish for Health: Improved Nutritional Quality of Cultured Fish for Human Consumption. Reviews in Fisheries Science & Aquaculture, 2020. https://doi.org/10.1080/23308249.2020.1762163
TANAMATI, A.; STEVANATO, F. B.; VISENTAINER, J. E. L.; MATSUSHITA, M.; SOUZA, N. E.; VISENTAINER, J. V. Fatty acid composition in wild and cultivated pacu and pintado fish. European Journal of Lipid Science and Technology, v. 111, p. 183-187, 2009. https://doi.org/10.1002/ejlt.200800103
THAMMAPAT.; P, RAVIYAN, P.; SIRIAMORNPUN, S. Proximate and fatty acids composition of the muscles and viscera of Asian catfish (Pangasius bocourti). Food Chemistry, v. 122, p. 223-227, 2010. https://doi.org/10.1016/j.foodchem.2010.02.065
TOCHER, D. R. Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, p. 107-184, 2003. https://doi.org/10.1080/713610925
TORRES, L. M.; ZAMBIAZI, R. C.; CHIATTONE, P. V.; FONSECA, T. P.; COSTA, C. S. Composition in fatty acid oils (Hoplias malabaricus) Pintadinho (unclassified and Pintadinho from the South Region of Rio Grande do Sul and Dead India in Uruguay. Semina: Ciências Agrárias, v. 33, n. 3, p. 1047-1048, 2012. https://doi.org/10.5433/1679-0359.2012v33n3p1047
ULBRICHT, T. L. V.; SOUTHGATE, D. A. T. Coronary heart disease: seven dietary factors. Lancet, v. 338, p. 8773-87785, 1991. https://doi.org/10.1016/0140-6736(91)91846-m
USYDUS, Z.;, SZLINDER-RICHERT J, ADAMCZYK M, SZATKOWSKA U. Marine and farmed fish in the Polish market: comparison of the nutritional value. Food Chemistry, v. 126, p. 78-84, 2011. https://doi.org/10.1016/j.foodchem.2010.10.080
VALENTI, W. C.; BARROS, H. P.; MORAES-VALENTI, P.; BUENO, G. W.; CAVALLI R. O. Aquaculture in Brazil: past, present and future. Aquaculture Reports, v. 19, 100611, 2021. https://doi.org/10.1016/j.aqrep.2021.100611
VASCONI, M.; LOPEZ, A.; GALIMBERTI, C.; ROJAS, J. M. M.; REDONDO, J. M.; BELLAGAMBA, F.; MORETTI, V. M. Authentication of farmed and wild european eel (Anguilla anguilla) by fatty acid profile and carbon and nitrogen isotopic analyses. Food Control, v. 102, p. 112-121, 2019. https://doi.org/10.1016/j.foodcont.2019.03.004
VIEIRA, E. C. S.; MÁRSICO, E. T.; CONTE-JUNIOR, C. A.; DAMIANI, C.; CANTO, A. C. V. C. S.; MONTEIRO, M. L. G.; SILVA, F. A. Effects of different frying techniques on the color, fatty acid profile, and lipid oxidation of Arapaima gigas. Journal of Food Processing and Preservation, e13820, 2018. https://doi.org/10.1111/jfpp.13820
VIEIRA, E. O.; VENTUROSO, O. J.; REINICKE, F.; SILVA, C. C.; PORTO, M. O.; ... CAVALI, J., et al. Production, conservation and health assessment of acid silage vicera of freshwater fish as a component of animal feed. International Journal of Agriculture and Forestry, v. 5, p. 177-181, 2015. https://doi.org/10.5923/j.ijaf.20150503.01
WEBER, J.; BOCHI, V. C.; RIBEIRO, C. P.; VICTORIO, A. M.; EMANUELLI, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry, v. 106, n. 1, p. 140-146, 2008. https://doi.org/10.1016/j.foodchem.2007.05.052
WING-KEONG, N.; PHAIK, L.; PENG, B. Dietary lipid and palm oil source affects growth, fatty acid composition and muscle α-tocopherol concentration of African catfish, Clarias gariepinus. Aquaculture, v. 215, p. 229-243, 2003. https://doi.org/10.1016/S0044-8486(02)00067-4
XIONG, L.; PEI, J.; WANG, X.; GUO, S.; GUO, X.; YAN, P. Lipidomics and transcriptome reveal the effects of feeding systems on fatty acids in yak’s meat. Foods, v. 11, n. 17, 2582, 2022. https://doi.org/10.3390/foods11172582xxx
XIYANG, Z.; XI, N.; XIAOXIAO, H.; XIAN, S.; XINJIAN, Y. ...YUANXIONG, C. et al. Fatty acid composition analyses of commercially important fish species from the Pearl River Estuary, China. PLoS ONE, v. 15, e0228276, 2020. https://doi.org/10.1371/journal.pone.0228276
WOOD, J. D.; ENSER, M. Factors infl uencing fatty acids in meat and the role of antioxidants in improving meat quality. British Journal Nutrition, v. 78, p. 49-60, 1997. https://doi.org/10.1079/bjn19970134