Low-intensity aerobic training reduces macrophages infiltration and improves morphological characteristics of soleus skeletal muscle from mdx mice

Contenido principal del artículo

Rosangela Antão
Emilly Sigoli
Deise Lucia Chesca
Tatiana Oliveira Passos de Araújo
Anabelle Silva Cornachione

Resumen

Duchenne Muscular Dystrophy (DMD) is characterized by the absence of the dystrophin protein. The absence of this protein determines recurrent injuries in muscle tissue progressing to necrosis and generalized weakness, leading to the patient’s death due to respiratory and/or cardiac failure. There is no cure for DMD. However, some exercise programs could minimize the disease's progression. Low-intensity training has been used as a rehabilitation program for dystrophic muscles, although the effects are still unclear. This study aimed to analyze the effects of low-intensity aerobic training on the general morphological aspects of the skeletal muscle of mdx mice.  Eighteen male mice were divided into three groups with six animals each: (mdx sedentary, mdx trained, and wild-type sedentary). The low-intensity training was performed on a treadmill running during the 37 sessions. After the experiments, the animals were euthanized, and the soleus muscle was excised for histological and immunofluorescence analyses. The training (37 sessions) showed an improvement intoning the morphological aspects of soleus mdx mice and a reduction of macrophage infiltration. The low-intensity training can minimize the inflammatory process and reverse morphological alteration in the soleus muscle of the mdx mice.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Antão, R., Sigoli, E., Chesca, D. L., Oliveira Passos de Araújo, T., & Cornachione, A. S. (2024). Low-intensity aerobic training reduces macrophages infiltration and improves morphological characteristics of soleus skeletal muscle from mdx mice. Revista Brasileira Multidisciplinar, 27(3), 59-67. https://doi.org/10.25061/2527-2675/ReBraM/2024.v27i3.1953
Sección
Artigos Originais

Citas

BOPPART, M.D.; DE LISIO, M.; ZOU, K.; HUNTSMAN, H.D. 2013. Defining a role for non-satellite stem cells in regulating muscle repair following exercise. Frontiers in Physiology, v. 4, n. 310, p. 1-6. DOI: https://doi.org/10.3389/fphys.2013.00310. Disponível em: https://www.frontiersin.org/articles/10.3389/fphys.2013.00310/full. Acesso em: 16 jul. 2023.

BURNS, D.P.; ROWLAND, J.; CANAVAN, L.; MURPHY, K.H.; BRANNOCK, M.; O’MALLEY, D.; O’HALLORAN, K.D.; EDGE, D. 2017. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2. Experimental Physiology, v. 102, p. 1177-1193. DOI:10.1113/EP086232. Disponível em: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP086232. Acesso em: 16 jul. 2023

CAMPBELL, K.P. Three Muscular Dystrophies: Loss of Cytoskeleton-Extracellular Matrix Linkage. Cell Press, v. 80, p. 675-679, March 10. 1995. DOI: 10.1016/0092-8674(95)90344-5. Disponível em: https://pubmed.ncbi.nlm.nih.gov/7889563/. Acesso em: 16 jul. 2023

CHAZAUD, B.; BRIGITTE M.; YACOUB-YOUSSEF, H.; ARNOLD, L.; GHERARDI, R.; SONNET, C.; LAFUSTE, P.; CHRETIEN, F. Dual and Beneficial Roles of Macrophages During Skeletal Muscle Regeneration. Exercise and Sport Sciences Reviews. V. 37, Issue 1, p. 18-22. 2009. DOI: 10.1097/JES.0b013e318190ebdb. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19098520/. Acesso em: 16 jul. 2023.

COWEN, L.; MANCINI, M.; MARTIN, A. Variability and trends in corticosteroid use by male United States participants with Duchenne muscular dystrophy in the Duchenne Registry. BMC Neurology. V. 19, n. 84. 2019. DOI: 10.1186/s12883-019-1304-8. Disponível em: https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-019-1304-8#citeas. Acesso em: 16 jul. 2023.

DECONINCK, N.; DAN, B. Pathophysiology of Duchenne Muscular Dystrophy: Current Hypotheses. Pediatric Neurology, v. 36, p. 1–7, 2007. DOI:10.1016/j.pediatrneurol.2006.09.016. Disponível em: https://pubmed.ncbi.nlm.nih.gov/17162189/. Acesso em: 16 jul. 2023.

DUAN, D.; GOEMANS, N.; TAKEDA, S.; MERCURI, E.; AARTSMA-RUS, A. Duchenne muscular dystrophy. Nature Reviews Disease Primers. v. 7, n. 13., p. 1-19. 2021. DOI: https://doi.org/10.1038/s41572-021-00248-3. Disponível em: https://www.nature.com/articles/s41572-021-00248-3. Acesso em: 16 jul. 2023.

FERNANDES, D.C.; CARDOSO-NASCIMENTO, J.J.A.; GARCIA, B.C.C.; COSTA, K.B.; VIEIRA, E.R.; OLIVEIRA, M.X.; MACHADO, A.S.D.; SANTOS, A.P.; GAIAD, T.P. Low-intensity training improves redox status and reduces collagen fibers in dystrophic muscle. Journal of Exercise Rehabilitation. v. 15, n.2, p. 213-223. 2019. DOI: https://doi.org/10.12965/jer.1938060.030. Disponível em: https://www.e-jer.org/journal/view.php?number=2013600668. Acesso em: 16 jul. 2023.

FRINCHI, M.; MORICI, G.; MUDÓ, G.; MARIA, R.; LIBERTO, V.D. Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants. v. 10, n. 558. p. 1-30. 2021. DOI: 10.3390/antiox10040558. Disponível em: https://www.mdpi.com/2076-3921/10/4/558. Acesso em: 16 jul. 2023.

FUKADA, S.; HIGASHIMOTO, T.; KANESHIGE, A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skeletal Muscle. v. 12, n. 17, n. 1-10. 2022. DOI: https://doi.org/10.1186/s13395-022-00300-0. Disponível em: https://skeletalmusclejournal.biomedcentral.com/articles/10.1186/s13395-022-00300-0. Acesso em: 16 jul. 2023.

GLOSS, D.; MOXLEY, R.T.; ASHWAL, S.; OSKOUI, M. Summary of updated practice guidelines: treatment with Duchenne muscular dystrophy corticosteroids: report by the American Academy of Neurology guidelines development subcommittee. Neurology, v. 86, n. 5, p. 465–472. 2016. DOI: https://doi.org/10.1212/WNL.0000000000002337. Disponível em: https://n.neurology.org/content/86/5/465. Acesso em: 16 jul. 2023.

GRANGE, R.W.; CALL, J.A. Recommendations to Define Exercise Prescription for Duchenne Muscular Dystrophy. Exercise and Sport Sciences Reviews. v. 35, n. 1, p. 12-17. 2007. DOI: 10.1249/01.jes.0000240020.84630.9d. Disponível em: https://pubmed.ncbi.nlm.nih.gov/17211188/. Acesso em: 16 jul. 2023.

HYZEWICZ, J.; TANIHATA, J.; KURAOKA, M.; NITAHARA-KASAHARA, Y.; BEYLIER, T.; RUEGG, U.T.; VATER, A.; TAKEDA, S. Low-Intensity Training and the C5a Complement Antagonist NOX-D21 Rescue the mdx Phenotype through Modulation of Inflammation. The American Journal of Pathology. v. 187, n. 5, p. 1147-1161, 2017. DOI: https://doi.org/10.1016/j.ajpath.2016.12.019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0002944017301955. Acesso em: 16 jul. 2023.

KACZOR, J.J.; HALL, J.E.; PAYNE, E.; TARNOPOLSKY, M.A. Low-intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice, Free Radical Biology Medicine. v. 43, n. 1, p. 145-154, 2007. DOI: https://doi.org/10.1016/j.freeradbiomed.2007.04.003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S089158490700250X?via%3Dihub. Acesso em: 16 jul. 2023.

KARIYAWASAM, D.; D’SILVA, A.; MOWAT, D.; RUSSEL, J.; SAMPAIO, H.; JONES, K.; TAYLOR, P.; FARRAR, M. Incidence of Duchenne muscular dystrophy in the modern era; an Australian study. European Journal of Human Genetics. v. 30, p. 1398-1404. 2022. DOI: https://doi.org/10.1038/s41431-022-01138-2. Disponível em: https://www.nature.com/articles/s41431-022-01138-2. Acesso em: 16 jul. 2023.

KHARRAZ, Y.; GUERRA, J.; MANN, C.J.; SERRANO, A.L.; MUÑOZ-CÁNOVES, P. Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair. Mediators of Inflammation. vol. 2013, p 9. 2013. DOI: https://doi.org/10.1155/2013/491497. Disponível em: https://www.hindawi.com/journals/mi/2013/491497/. Acesso em: 16 jul. 2023.

LOWE, D. A.; WILLIAMS, B. O.; THOMAS, D. D.; GRANGE, R. W. Molecular and cellular contractile dysfunction of dystrophic muscle from young mice. Muscle & Nerve. v. 34, n. 1, p. 92-100. 2006. DOI: 10.1002/mus.20562. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/mus.20562. Acesso em: 16 jul. 2023.

MANAF, B.; BASMA, F.; PHILIPPE, M.; JACQUES, P. Exercise improves the success of myoblast transplantation in mdx mice. Neuromuscular Disorders. v. 34, n. 1, p. 518–529. 2006. DOI: 10.1016/j.nmd.2006.06.003. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16634063/. Acesso em: 16 jul. 2023.

MORENA, C.P.; MARTINEZ-VIZCAINO, V.; ALVAREZ-BUENO, C.; RODRIGUEZ, R.F.; LÓPEZ, E.J.; TORRES-COSTOSO, A.I.; CAVERO-REDONDO, I. Effectiveness of pharmacological treatments in Duchenne muscular dystrophy: a protocol for a systematic review and meta-analysis, BMJ Open. v. 9, p. 1-6, 2019. DOI: 10.1136/bmjopen-2019-029341. Disponível em: https://bmjopen.bmj.com/content/9/9/e029341.citation-tools. Acesso em: 16 jul. 2023.

PEDRAZZANI, P.S.; ARAÚJO, T.O.P.; SIGOLI, E.; DA SILVA, I.R.; DA ROZA, D.L.; CHESCA, D.L.; RASSIER, D.E.; CORNACHIONE, A.S. Twenty-one days of low-intensity eccentric training improve morphological characteristics and function of the soleus muscles of mdx mice. Scientific Reports. v. 11, n. 1, p. 3579. 2021. DOI: 10.1038/s41598-020-79168-3. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33574358/. Acesso em: 16 jul. 2023.

PERANDINI, L.A.; CHIMIN, P.; DA LUTKEMEYER, D.S.; CÂMARA, N.O.S. Chronic inflammation in skeletal muscle impairs satellite cells' function during regeneration: can physical exercise restore the satellite cell niche? The FEBS Journal. v. 285, n. 11, p. 1973– 1984. 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29473995/. Acesso em: 16 jul. 2023.

PINTO, P.A.F.; MACHADO, AS.D.; LIBÓRIO, L.R.; SANTOS, A.P.; OLIVEIRA, M.X.; GAIAD, T.P. Low-intensity training provokes adaptations on muscle fibrosis of a muscular dystrophy model. International Journal of Morphology. v. 36, n.2, p.471-477. 2018. Disponível em: https://www.scielo.cl/scielo.php?pid=S0717-95022018000200471&script=sci_abstract&tlng=en. Acesso em: 16 jul. 2023.

RYDER, S.; LEADLEY, R.M.; ARMSTRONG, N.; WESTWOOD, M.; KOCK, S.; BUTT, T.; JAIN, M.; KLEIJNEN, J. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet Journal of Rare Diseases. v. 12, n. 79, p. 1-21. 2017. DOI: https://doi.org/10.1186/s13023-017-0631-3. Disponível em: https://ojrd.biomedcentral.com/articles/10.1186/s13023-017-0631-3. Acesso em: 16 jul. 2023.

SANTOS, N.B.; REZENDE, M.M.; TERNI, A.; HAYASHI, M.C.B., FÁVERO, F.M., QUADROS, A.A.J., DOS REIS, L.I.O., ADISSI, M., LANGER, A.L., FONTS, S.V., OLIVEIRA, A.S.B. Perfil clínico e funcional dos pacientes com distrofia muscular de Duchenne assistidos na Associação Brasileira de Distrofia Muscular (ABDIM). Revista Neurociências, v. 14, n. 1, p. 15-22. 2006. DOI: https://doi.org/10.34024/rnc.2006.v14.8782. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/8782. Acesso em: 16 jul. 2023.

SIGOLI, E.; ANTÃO, R.A.; GUERREIRO, M.P.; DE ARAÚJO, T.O.P.; SANTOS, P.K.D.; DA ROZA, D.L.; RASSIER, D.E.; CORNACHIONE, A.S. Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy, International Journal of Molecular Science. v. 23, n. 9, p. 4483. 2022. DOI: https://doi.org/10.3390/ijms23094483. Disponível em: https://www.mdpi.com/1422-0067/23/9/4483. Acesso em: 16 jul. 2023.

TIDBALL, J.G.; WEHLING-HENRICKS, M. Macrophages promote muscle membrane repair and muscle fiber growth and regeneration during modified muscle loading in mice in vivo. Journal of Physiology. v. 578, n. 1, p. 327-36. 2007. DOI: 10.1113/jphysiol.2006.118265. Disponível em: https://pubmed.ncbi.nlm.nih.gov/17038433/. Acesso em: 16 jul. 2023.

TRIPODI, L.; VILLA, C.; MOLINARO, D.; TORRENTE, Y.; FARINI, A. The Immune System in Duchenne Muscular Dystrophy Pathogenesis. Biomedicines. v. 9, n. 10, p. 1447. 2021. DOI: https:// doi.org/10.3390/biomedicines9101447. Disponível em: https://www.mdpi.com/2227-9059/9/10/1447. Acesso em: 16 jul. 2023.

WANG, F.; WEN, J.; GUO, B.; WU, L.; LIU, Z.; ZAIJUN, Z. Behavioral, Biochemical and Pathological Characterization of a new MDX Mouse Model of Duchenne Muscular Dystrophy. Journal of Pharmaceutical and Biomedicine Science. v. 10, n. 06, p. 119–128. 2020. DOI: https://doi.org/10.5281/zenodo.3930105. Disponível em: https://zenodo.org/record/3930105. Acesso em: 16 jul. 2023