Produção de compósitos à base de Celulose bacteriana/Laponita organofuncionalizados com 3-aminopropiltrimetóxisilano visando aplicações médico farmacêuticas.

Contenido principal del artículo

Jhonatan Silva
Nayara Carolina Nunes
Vera Regina Leopoldo Constantino
Hernane da Silva Barud

Resumen

Em comparação com os curativos tradicionais, as membranas de celulose bacteriana (CB) apresentam características interessantes no tratamento de lesões cutâneas como: o alívio imediato da dor, a manutenção da umidade local, a ação como barreira física de proteção, e a adsorção de exsudatos durante a fase inflamatória; contudo, não possuem propriedade antibacteriana intrínseca. Já em sistema de liberação de fármacos, a CB apresenta um modelo de liberação rápida do princípio ativo (“burst release”) que possui efeitos negativos, podendo ser farmacologicamente perigosos. Desta forma, o objetivo do presente trabalho é a obtenção de compósitos à base de CB e a argila Laponita   organofuncionalizados com grupos amino para o desenvolvimento de um novo material que sirva como precursor de curativos multifuncionais com ação antibacteriana e sistema de liberação controlada de fármacos. A espectroscopia vibracional no infravermelho mostrou as bandas referentes aos grupos -NH2 e Si-O, da estrutura do silano e da argila, respectivamente, indicando assim a presença desses componentes na amostra. Além disso, a modificação da celulose ocasionou mudanças estruturais das regiões cristalinas da CB. Observou-se a presença de grânulos superficiais nas fibras, a redução da estabilidade térmica e uma mudança na permeação ao vapor de água, comparados com a CB prístina, indicando sucesso na modificação do polímero.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Silva, J., Nunes, N. C. ., Constantino, V. R. L. ., & Barud, H. da S. (2024). Produção de compósitos à base de Celulose bacteriana/Laponita organofuncionalizados com 3-aminopropiltrimetóxisilano visando aplicações médico farmacêuticas. Revista Brasileira Multidisciplinar, 27(1), 45-56. https://doi.org/10.25061/2527-2675/ReBraM/2024.v27i1.2100
Sección
Artigos Originais

Citas

BADSHAH, M. et al. Surface modification and evaluation of bacterial cellulose for drug delivery. International Journal of Biological Macromolecules, v. 113, p. 526–533, 2018.

BARUD, H. D. S. et al. Antimicrobial Brazilian propolis (EPP-AF) containing biocellulose membranes as promising biomaterial for skin wound healing. Evidence-based Complementary and Alternative Medicine, v. 2013, 2013.

BARUD, H. S. et al. Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydrate Polymers, v. 83, n. 3, p. 1279–1284, 2011.

BARUD, H. S. et al. Transparent bacterial cellulose-boehmite-epoxi-siloxane nanocomposites. Composites Part A: Applied Science and Manufacturing, v. 43, n. 6, p. 973–977, 2012.

BORBA, P. B. et al. Bacterial nanocellulose containing diethylditiocarbamate bio-curatives: physicochemical characterization and drug delivery evaluation. Cellulose, v. 29, n. 3, p. 1557–1565, 2022.

BRASIL. MINISTÉRIO DA SAÚDE. SECRETARIA DE CIÊNCIA, T. E I. E. Membrana de Biocelulose no tratamento de: lesões cutâneas com perda de pele, úlceras venosas e arteriais, lesões por pressão, queimaduras de segundo grau e áreas doadoras de enxerto TT - Biocellulose membrane, non-treatment of: lesoes cutaneous lesion, v. [s.l: s.n.]. Disponível em: <http://conitec.gov.br/images/Relatorios/2018/Relatorio_CurativoBiocelulose.pdf>.

CHANTEREAU, G. et al. Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties. Carbohydrate Polymers, v. 220, n. May, p. 71–78, 2019.

DE SALVI, D. T. B. et al. Self-supported bacterial cellulose/boehmite organic-inorganic hybrid films. Journal of Sol-Gel Science and Technology, v. 63, n. 2, p. 211–218, 2012.

DOMENEGUETTI, R. R. et al. Structural and morphological properties of in-situ biosynthesis of biocompatible bacterial cellulose/Laponite nanocomposites. Applied Clay Science, v. 234, n. May 2022, p. 106851, 2023.

ESA, F.; TASIRIN, S. M.; RAHMAN, N. A. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia, v. 2, p. 113–119, 2014.

FADEL, G. et al. International Journal of Biological Macromolecules Bacterial cellulose in biomedical applications : A review. International Journal of Biological Macromolecules, v. 104, p. 97–106, 2017.

FERNANDES, S. C. M. et al. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Applied Materials and Interfaces, v. 5, n. 8, p. 3290–3297, 2013.

FRENCH, A. D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, v. 21, n. 2, p. 885–896, 2014.

FRENCH, A. D. Increment in evolution of cellulose crystallinity analysis. Cellulose, v. 27, n. 10, p. 5445–5448, 11 jul. 2020.

FRONE, A. N. et al. Surface treatment of bacterial cellulose in mild, eco-friendly conditions. Coatings, v. 8, n. 6, 2018.

GHADIRI, M. et al. Laponite clay as a carrier for in situ delivery of tetracycline. RSC Advances, v. 3, n. 43, p. 20193–20201, 2013.

HETTEGGER, H. et al. Synthesis, characterization and photo-bactericidal activity of silanized xanthene-modified bacterial cellulose membranes. Cellulose, v. 22, n. 5, p. 3291–3304, 2015.

HORUE, M. et al. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics, v. 15, n. 2, p. 1–29, 2023.

HSU, C. Y. et al. The Antimicrobial Effects of Bacterial Cellulose Produced by Komagataeibacter intermedius in Promoting Wound Healing in Diabetic Mice. International Journal of Molecular Sciences, v. 23, n. 10, 2022.

HU, W. et al. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydrate Polymers, v. 101, n. 1, p. 1043–1060, 2014.

HUANG, X.; BRAZEL, C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, v. 73, n. 2–3, p. 121–136, 2001.

KLEMM, D. et al. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, v. 44, n. 22, p. 3358–3393, 2005.

LEBARON, P. C.; WANG, Z.; PINNAVAIA, T. J. Polymer-layered silicate nanocomposites: An overview. Applied Clay Science, v. 15, n. 1–2, p. 11–29, 1999.

LUCIA, A. et al. A direct silanization protocol for dialdehyde cellulose. Molecules, v. 25, n. 10, 2020.

MENEGUIN, A. et al. Nanocellulose/palygorskite biocomposite membranes for controlled release of metronidazole. International Journal of Biological Macromolecules, v. 188, n. July, p. 689–695, 2021.

MUANGMAN, P. et al. Efficiency of microbial cellulose dressing in partial-thickness burn wounds. Journal of the American College of Certified Wound Specialists, v. 3, n. 1, p. 16–19, 2011.

OLIVEIRA BARUD, H. G. et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydrate Polymers, v. 128, p. 41–51, 2015.

PEROTTI, G. F. et al. Bacterial cellulose-laponite clay nanocomposites. Polymer, v. 52, n. 1, p. 157–163, 2011.

QIU, K.; NETRAVALI, A. N. A review of fabrication and applications of bacterial cellulose based nanocomposites. Polymer Reviews, v. 54, n. 4, p. 598–626, 2014a.

QIU, K.; NETRAVALI, A. N. A Review of Fabrication and Applications of Bacterial Cellulose Based Nanocomposites. Polymer Reviews, v. 54, n. 4, p. 598–626, 2 out. 2014b.

SASKA, S. et al. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. Journal of Materials Science: Materials in Medicine, v. 23, n. 9, p. 2253–2266, 2012.

SEGAL, L. et al. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, v. 29, n. 10, p. 786–794, 1959.

SHEN, L.; CHEN, Z. Critical review of the impact of tortuosity on diffusion. Chemical Engineering Science, v. 62, n. 14, p. 3748–3755, 2007.

SILVA, J. M. et al. Inorganic-organic bio-nanocomposite films based on Laponite and Cellulose Nanofibers (CNF). Applied Clay Science, v. 168, n. September 2018, p. 428–435, 2019.

SILVA, R. R. et al. Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology, v. 81, n. 1, p. 114–126, 2017.

ULLAH, H. et al. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. [s.l.] Elsevier Ltd., 2016. v. 150